Results 1  10
of
139
SDPT3  a MATLAB software package for semidefinite programming
 OPTIMIZATION METHODS AND SOFTWARE
, 1999
"... This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also imp ..."
Abstract

Cited by 221 (12 self)
 Add to MetaCart
This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also implemented. Four types of search directions are available, namely, the AHO, HKM, NT, and GT directions. A few classes of SDP problems are included as well. Numerical results for these classes show that our algorithms are fairly efficient and robust on problems with dimensions of the order of a few hundreds.
Fast Linear Iterations for Distributed Averaging
 Systems and Control Letters
, 2003
"... We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear ..."
Abstract

Cited by 203 (11 self)
 Add to MetaCart
We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear iteration can be cast as a semidefinite program, and therefore efficiently and globally solved. These optimal linear iterations are often substantially faster than several common heuristics that are based on the Laplacian of the associated graph.
A direct formulation for sparse pca using semidefinite programming
 In NIPS 17
, 2004
"... Abstract. Given a covariance matrix, we consider the problem of maximizing the variance explained by a particular linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This problem arises in the decomposition of a covariance matrix into ..."
Abstract

Cited by 167 (29 self)
 Add to MetaCart
Abstract. Given a covariance matrix, we consider the problem of maximizing the variance explained by a particular linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This problem arises in the decomposition of a covariance matrix into sparse factors or sparse principal component analysis (PCA), and has wide applications ranging from biology to finance. We use a modification of the classical variational representation of the largest eigenvalue of a symmetric matrix, where cardinality is constrained, and derive a semidefinite programming–based relaxation for our problem. We also discuss Nesterov’s smooth minimization technique applied to the semidefinite program arising in the semidefinite relaxation of the sparse PCA problem. The method has complexity O(n 4 √ log(n)/ɛ), where n is the size of the underlying covariance matrix and ɛ is the desired absolute accuracy on the optimal value of the problem.
Solving LargeScale Sparse Semidefinite Programs for Combinatorial Optimization
 SIAM JOURNAL ON OPTIMIZATION
, 1998
"... We present a dualscaling interiorpoint algorithm and show how it exploits the structure and sparsity of some large scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational re ..."
Abstract

Cited by 113 (11 self)
 Add to MetaCart
We present a dualscaling interiorpoint algorithm and show how it exploits the structure and sparsity of some large scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational results of interiorpoint algorithms for approximating the maximum cut semidefinite programs with dimension upto 3000.
A Nonlinear Programming Algorithm for Solving Semidefinite Programs via Lowrank Factorization
 Mathematical Programming (series B
, 2001
"... In this paper, we present a nonlinear programming algorithm for solving semidefinite programs (SDPs) in standard form. The algorithm's distinguishing feature is a change of variables that replaces the symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according ..."
Abstract

Cited by 108 (9 self)
 Add to MetaCart
In this paper, we present a nonlinear programming algorithm for solving semidefinite programs (SDPs) in standard form. The algorithm's distinguishing feature is a change of variables that replaces the symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according to the factorization X = RR T . The rank of the factorization, i.e., the number of columns of R, is chosen minimally so as to enhance computational speed while maintaining equivalence with the SDP. Fundamental results concerning the convergence of the algorithm are derived, and encouraging computational results on some largescale test problems are also presented. Keywords: semidefinite programming, lowrank factorization, nonlinear programming, augmented Lagrangian, limited memory BFGS. 1 Introduction In the past few years, the topic of semidefinite programming, or SDP, has received considerable attention in the optimization community, where interest in SDP has included the investigation of...
Semidefinite optimization
 Acta Numerica
, 2001
"... Optimization problems in which the variable is not a vector but a symmetric matrix which is required to be positive semidefinite have been intensely studied in the last ten years. Part of the reason for the interest stems from the applicability of such problems to such diverse areas as designing the ..."
Abstract

Cited by 107 (2 self)
 Add to MetaCart
Optimization problems in which the variable is not a vector but a symmetric matrix which is required to be positive semidefinite have been intensely studied in the last ten years. Part of the reason for the interest stems from the applicability of such problems to such diverse areas as designing the strongest column, checking the stability of a differential inclusion, and obtaining tight bounds for hard combinatorial optimization problems. Part also derives from great advances in our ability to solve such problems efficiently in theory and in practice (perhaps “or ” would be more appropriate: the most effective computational methods are not always provably efficient in theory, and vice versa). Here we describe this class of optimization problems, give a number of examples demonstrating its significance, outline its duality theory, and discuss algorithms for solving such problems.
Semidefinite Programming and Combinatorial Optimization
 DOC. MATH. J. DMV
, 1998
"... We describe a few applications of semide nite programming in combinatorial optimization. ..."
Abstract

Cited by 96 (1 self)
 Add to MetaCart
We describe a few applications of semide nite programming in combinatorial optimization.
Fastest Mixing Markov Chain on A Graph
 SIAM REVIEW
, 2003
"... We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e. the mixing rate of the Mar ..."
Abstract

Cited by 92 (15 self)
 Add to MetaCart
We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e. the mixing rate of the Markov chain, is determined by the second largest (in magnitude) eigenvalue of the transition matrix. In this paper we address the problem of assigning probabilities to the edges of the graph in such a way as to minimize the second largest magnitude eigenvalue, i.e., the problem of finding the fastest mixing Markov chain on the graph. We show that
Handbook of semidefinite programming
"... Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, con ..."
Abstract

Cited by 61 (2 self)
 Add to MetaCart
Semidefinite programming (or SDP) has been one of the most exciting and active research areas in optimization during the 1990s. It has attracted researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity was spurred by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interiorpoint algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. This book includes nineteen chapters on the theory, algorithms, and applications of semidefinite programming. Written by the leading experts on the subject, it offers an advanced and broad overview of the current state of the field. The coverage is somewhat less comprehensive, and the overall level more advanced, than we had planned at the start of the project. In order to finish the book in a timely fashion, we have had to abandon hopes for separate chapters on some important topics (such as a discussion of SDP algorithms in the
On Lagrangian relaxation of quadratic matrix constraints
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equ ..."
Abstract

Cited by 45 (17 self)
 Add to MetaCart
Abstract. Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent to semidefinite programming relaxations. For several special cases of QQP, e.g., convex programs and trust region subproblems, the Lagrangian relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective. In this paper we consider a certain QQP where the quadratic constraints correspond to the matrix orthogonality condition XXT = I. For this problem we show that the Lagrangian dual based on relaxing the constraints XXT = I and the seemingly redundant constraints XT X = I has a zero duality gap. This result has natural applications to quadratic assignment and graph partitioning problems, as well as the problem of minimizing the weighted sum of the largest eigenvalues of a matrix. We also show that the technique of relaxing quadratic matrix constraints can be used to obtain a strengthened semidefinite relaxation for the maxcut problem. Key words. Lagrangian relaxations, quadratically constrained quadratic programs, semidefinite programming, quadratic assignment, graph partitioning, maxcut problems