Results 1 
7 of
7
Canonical Symbolic Analysis of Large Analog Circuits with Determinant Decision Diagrams
 IEEE TRANS. ON COMPUTERAIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
, 2000
"... Symbolic analogcircuit analysis has many applications, and is especially useful for analog synthesis and testability analysis. Existing approaches rely on two forms of symbolic expression representation: expanded sumofproduct form or arbitrarily nested form. Expanded form suffers the problem that ..."
Abstract

Cited by 24 (8 self)
 Add to MetaCart
(Show Context)
Symbolic analogcircuit analysis has many applications, and is especially useful for analog synthesis and testability analysis. Existing approaches rely on two forms of symbolic expression representation: expanded sumofproduct form or arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit, and approximation has to be used. Nested form is not canonical, i.e., many representations exist for a symbolic expression, and manipulations with the nested form are often complicated. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. It consists of representing the symbolic determinant of a circuit matrix by a graphcalled determinant decision diagram (DDD)and performing symbolic analysis by graph manipulations. We showed that DDD construction, as well as many symbolic analysis algorithms, can be performed in time complex...
Symbolic Analysis of Large Analog Circuits with Determinant Decision Diagrams
, 1997
"... Symbolic analogcircuit analysis has many applications, and is especially useful for analog synthesis and testability analysis. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. It consists of representing the s ..."
Abstract

Cited by 16 (10 self)
 Add to MetaCart
Symbolic analogcircuit analysis has many applications, and is especially useful for analog synthesis and testability analysis. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. It consists of representing the symbolic determinant of a circuit matrix by a graphcalled determinant decision diagram (DDD)and performing symbolic analysis by graph manipulations. We showed that DDD construction and DDDbased symbolic analysis can be performed in time complexity proportional to the number of DDD vertices. We described a vertex ordering heuristic, and showed that the number of DDD vertices can be quite smallusually ordersofmagnitude less than the number of product terms. The algorithm has been implemented. An orderofmagnitude improvement in both CPU time and memory usages over existing symbolic analyzers ISAAC and MapleV has been observed for large analog circuits. 1. Introduction Symbolic a...
Hierarchical Symbolic Analysis Of Large Analog Circuits With Determinant Decision Diagrams
 IEEE Trans. on ComputerAided Design of Integrated Circuits and Systems
, 1998
"... A novel hierarchical approach is proposed to symbolic analysis of large analog circuits. The key idea is to use a graphbased representation  called Determinant Decision Diagram (DDD)  to represent the symbolic determinant and cofactors associated with the MNA matrix for each subcircuit block. B ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
(Show Context)
A novel hierarchical approach is proposed to symbolic analysis of large analog circuits. The key idea is to use a graphbased representation  called Determinant Decision Diagram (DDD)  to represent the symbolic determinant and cofactors associated with the MNA matrix for each subcircuit block. By exploiting the inherent sharing and sparsity of symbolic expressions, DDD is capable of representing a huge number of symbolic product terms in a canonical and highlycompact manner. Further, it enables cofactoring and sensitivity computation to be performed with time linear in the size of DDD. Experimental results have demonstrated that our method outperforms the bestknown existing hierarchical symbolic analyzer SCAPP, and sometimes even numerical simulator SPICE.
Hierarchical Symbolic Analysis of Analog Integrated Circuits via Determinant Decision Diagrams
 IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems, Vol.19, Apr 2000
, 2000
"... A new approach is proposed to hierarchical symbolic analysis of large analog integrated circuits. It consists of performing symbolic suppression of each subcircuit to its terminals in terms of subcircuit matrix determinants and cofactors, and applying Cramer's rule to solve symbolically the set ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
(Show Context)
A new approach is proposed to hierarchical symbolic analysis of large analog integrated circuits. It consists of performing symbolic suppression of each subcircuit to its terminals in terms of subcircuit matrix determinants and cofactors, and applying Cramer's rule to solve symbolically the set of equations at the top level of the circuit hierarchy. The novelty of the proposed approach is to use an annotated, directed and acyclic graph, called Determinant Decision Diagram (DDD), to represent symbolic determinants of subcircuit matrices and cofactors used in subcircuit suppression, as well as symbolic determinants of the toplevel circuit matrix and cofactors required in applying Cramer's rule. DDD enables systematically exploiting the inherent sparsity of circuit matrices and the sharing of symbolic expressions. It is capable of representing a huge number of symbolic product terms in a canonical and highly compact manner. The proposed approach is illustrated using a Cauer parameter low...
Hierarchical approach to exact symbolic analysis of large analog circuits
 in Proc. Design Automation Conf. (DAC
, 2004
"... Abstract—This paper proposes a novel approach to the exact symbolic analysis of very large analog circuits. The new method is based on determinant decision diagrams (DDDs) representing symbolic product terms. But instead of constructing DDD graphs directly from a flat circuit matrix, the new method ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
(Show Context)
Abstract—This paper proposes a novel approach to the exact symbolic analysis of very large analog circuits. The new method is based on determinant decision diagrams (DDDs) representing symbolic product terms. But instead of constructing DDD graphs directly from a flat circuit matrix, the new method constructs DDD graphs in a hierarchical way based on hierarchically defined circuit structures. The resulting algorithm can analyze much larger analog circuits exactly than before. The authors show that exact symbolic expressions of a circuit are cancellationfree expressions when the circuit is analyzed hierarchically. With this, the authors propose a novel symbolic decancellation process, which essentially leads to the hierarchical DDD graph constructions. The new algorithm partially avoids the exponential DDD construction time by employing more efficient DDD graph operations during the hierarchical construction. The experimental results show that very large analog circuits, which cannot be analyzed exactly before like UPS and other unstructured circuits up to 100 nodes, can be analyzed by the new approach for the first time. The new approach significantly improves the exact symbolic capacity and promises huge potentials for the applications of exact symbolic analysis. Index Terms—Behavioral modeling, circuit simulation, symbolic analysis. I.
Symbolic Analysis Tools  The StateOfTheArt
, 1996
"... This paper reviews the main last generation symbolic analyzers, comparing them in terms of functionality, pointing out also their shortcomings. The stateoftheart in this field is also studied, pointing out directions for future research. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
This paper reviews the main last generation symbolic analyzers, comparing them in terms of functionality, pointing out also their shortcomings. The stateoftheart in this field is also studied, pointing out directions for future research.