Results 1 
3 of
3
Generic Haskell: practice and theory
 In Generic Programming, Advanced Lectures, volume 2793 of LNCS
, 2003
"... Abstract. Generic Haskell is an extension of Haskell that supports the construction of generic programs. These lecture notes describe the basic constructs of Generic Haskell and highlight the underlying theory. Generic programming aims at making programming more effective by making it more general. ..."
Abstract

Cited by 65 (23 self)
 Add to MetaCart
Abstract. Generic Haskell is an extension of Haskell that supports the construction of generic programs. These lecture notes describe the basic constructs of Generic Haskell and highlight the underlying theory. Generic programming aims at making programming more effective by making it more general. Generic programs often embody nontraditional kinds of polymorphism. Generic Haskell is an extension of Haskell [38] that supports the construction of generic programs. Generic Haskell adds to Haskell the notion of structural polymorphism, the ability to define a function (or a type) by induction on the structure of types. Such a function is generic in the sense that it works not only for a specific type but for a whole class of types. Typical examples include equality, parsing and pretty printing, serialising, ordering, hashing, and so on. The lecture notes on Generic Haskell are organized into two parts. This first part motivates the need for genericity, describes the basic constructs of Generic Haskell, puts Generic Haskell into perspective, and highlights the underlying theory. The second part entitled “Generic Haskell: applications ” delves deeper into the language discussing three nontrivial applications of Generic Haskell: generic dictionaries, compressing XML documents, and a generic version of the zipper data type. The first part is organized as follows. Section 1 provides some background discussing type systems in general and the type system of Haskell in particular. Furthermore, it motivates the basic constructs of Generic Haskell. Section 2 takes a closer look at generic definitions and shows how to define some popular generic functions. Section 3 highlights the theory underlying Generic Haskell and discusses its implementation. Section 4 concludes. 1
A Generic Programming Extension for Haskell
 Utrecht University
, 1999
"... Many functions can be dened completely generically for all datatypes. Examples include pretty printers (eg show), parsers (eg read), data converters, equality and comparison functions, mapping functions, and so forth. This paper proposes a generic programming extension that enables the user to dene ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
Many functions can be dened completely generically for all datatypes. Examples include pretty printers (eg show), parsers (eg read), data converters, equality and comparison functions, mapping functions, and so forth. This paper proposes a generic programming extension that enables the user to dene such functions in Haskell. In particular, the proposal aims at generalizing Haskell's deriving construct, which is commonly considered decient since instance declarations can only be derived for a few predened classes. Using generic denitions derived instances can be specied for arbitrary userdened type classes and for classes that abstract over type constructors of rstorder kind. 1 Introduction Generic or polytypic programming aims at relieving the programmer from repeatedly writing functions of similar functionality for dierent datatypes. Typical examples for socalled generic functions include pretty printers (eg show), parsers (eg read), functions that convert data into a u...
Generalizing Generalized Tries
, 1999
"... A trie is a search tree scheme that employs the structure of search keys to organize information. Tries were originally devised as a means to represent a collection of records indexed by strings over a fixed alphabet. Based on work by C.P. Wadsworth and others, R.H. Connelly and F.L. Morris generali ..."
Abstract

Cited by 31 (8 self)
 Add to MetaCart
A trie is a search tree scheme that employs the structure of search keys to organize information. Tries were originally devised as a means to represent a collection of records indexed by strings over a fixed alphabet. Based on work by C.P. Wadsworth and others, R.H. Connelly and F.L. Morris generalized the concept to permit indexing by elements of an arbitrary monomorphic datatype. Here we go one step further and define tries and operations on tries generically for arbitrary firstorder polymorphic datatypes. The derivation is based on techniques recently developed in the context of polytypic programming. It is well known that for the implementation of generalized tries nested datatypes and polymorphic recursion are needed. Implementing tries for polymorphic datatypes places even greater demands on the type system: it requires rank2 type signatures and higherorder polymorphic nested datatypes. Despite these requirements the definition of generalized tries for polymorphic datatypes is...