Results 1 
4 of
4
The Barendregt Cube with Definitions and Generalised Reduction
, 1997
"... In this paper, we propose to extend the Barendregt Cube by generalising reduction and by adding definition mechanisms. We show that this extension satisfies all the original properties of the Cube including Church Rosser, Subject Reduction and Strong Normalisation. Keywords: Generalised Reduction, ..."
Abstract

Cited by 37 (17 self)
 Add to MetaCart
In this paper, we propose to extend the Barendregt Cube by generalising reduction and by adding definition mechanisms. We show that this extension satisfies all the original properties of the Cube including Church Rosser, Subject Reduction and Strong Normalisation. Keywords: Generalised Reduction, Definitions, Barendregt Cube, Church Rosser, Subject Reduction, Strong Normalisation. Contents 1 Introduction 3 1.1 Why generalised reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Why definition mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The item notation for definitions and generalised reduction . . . . . . . . . . 4 2 The item notation 7 3 The ordinary typing relation and its properties 10 3.1 The typing relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Properties of the ordinary typing relation . . . . . . . . . . . . . . . . . . . . 13 4 Generalising reduction in the Cube 15 4.1 The generalised...
Redexes in Item Notation Classical Notation Item Notation
, 2009
"... • I(λx.B) = [x]I(B) and I(AB) = (I(B))I(A) • I((λx.(λy.xy))z) ≡ (z)[x][y](y)x. The items are (z), [x], [y] and (y). • applicator wagon (z) and abstractor wagon [x] occur NEXT to each other. • A term is a wagon followed by a term. • (β) ..."
Abstract
 Add to MetaCart
• I(λx.B) = [x]I(B) and I(AB) = (I(B))I(A) • I((λx.(λy.xy))z) ≡ (z)[x][y](y)x. The items are (z), [x], [y] and (y). • applicator wagon (z) and abstractor wagon [x] occur NEXT to each other. • A term is a wagon followed by a term. • (β)
A Bargain for Intersection Types: A Simple Strong Normalization Proof
"... This pearl gives a discount proof of the folklore theorem that every strongly #normalizing #term is typable with an intersection type. (We consider typings that do not use the empty intersection # which can type any term.) The proof uses the perpetual reduction strategy which finds a longest path. ..."
Abstract
 Add to MetaCart
This pearl gives a discount proof of the folklore theorem that every strongly #normalizing #term is typable with an intersection type. (We consider typings that do not use the empty intersection # which can type any term.) The proof uses the perpetual reduction strategy which finds a longest path. This is a simplification over existing proofs that consider any longest reduction path. The choice of reduction strategy avoids the need for weakening or strengthening of type derivations. The proof becomes a bargain because it works for more intersection type systems, while being simpler than existing proofs.
The LambdaCube With Classes Which Approximate Reductional Equivalence
, 1995
"... We study lambda calculus and refine the notions of fireduction and fiequality. In particular, we define the operation TS (term reshuffling) on terms which reshuffles a term in such a way that more redexes become visible. Two terms are called shuffleequivalent if they have syntactically equivalent ..."
Abstract
 Add to MetaCart
We study lambda calculus and refine the notions of fireduction and fiequality. In particular, we define the operation TS (term reshuffling) on terms which reshuffles a term in such a way that more redexes become visible. Two terms are called shuffleequivalent if they have syntactically equivalent TSimages. The shuffleequivalence classes are shown to divide the classes of fiequal terms into smaller classes consisting of terms with similar reduction behaviour. The refinement of fireduction from a relation on terms to a relation on shuffle classes, called shufflereduction, allows one to make more redexes visible and to contract these newly visible redexes. This enables one to have more freedom in choosing the reduction path of a term, which can result in smaller terms along the reduction path if a clever reduction strategy is used. Moreover, this gain in reductional breadth is not at the expense of reductional length. We show that the cube of [Barendregt 92] extended with shuffle...