Results 1 
7 of
7
The Barendregt Cube with Definitions and Generalised Reduction
, 1997
"... In this paper, we propose to extend the Barendregt Cube by generalising reduction and by adding definition mechanisms. We show that this extension satisfies all the original properties of the Cube including Church Rosser, Subject Reduction and Strong Normalisation. Keywords: Generalised Reduction, ..."
Abstract

Cited by 42 (20 self)
 Add to MetaCart
In this paper, we propose to extend the Barendregt Cube by generalising reduction and by adding definition mechanisms. We show that this extension satisfies all the original properties of the Cube including Church Rosser, Subject Reduction and Strong Normalisation. Keywords: Generalised Reduction, Definitions, Barendregt Cube, Church Rosser, Subject Reduction, Strong Normalisation. Contents 1 Introduction 3 1.1 Why generalised reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Why definition mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The item notation for definitions and generalised reduction . . . . . . . . . . 4 2 The item notation 7 3 The ordinary typing relation and its properties 10 3.1 The typing relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Properties of the ordinary typing relation . . . . . . . . . . . . . . . . . . . . 13 4 Generalising reduction in the Cube 15 4.1 The generalised...
A reduction relation for which postponement of Kcontractions, Conservation and Preservation of Strong Normalisation hold
 Univ. of Glasgow, Glasgow
, 1996
"... Postponement of fi K contractions and the conservation theorem do not hold for ordinary fi but have been established by de Groote for a mixture of fi with another reduction relation. In this paper, de Groote's results are generalised for a single reduction relation fi e which generalises fi. ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
Postponement of fi K contractions and the conservation theorem do not hold for ordinary fi but have been established by de Groote for a mixture of fi with another reduction relation. In this paper, de Groote's results are generalised for a single reduction relation fi e which generalises fi. This then is used to solve an open problem of fi e : the Preservation of Strong Normalisation 1 . Keywords: Generalised fireduction, Postponement of Kcontractions, Generalised Conservation, Preservation of Strong Normalisation. 1 Introduction 1.1 Background and Motivation In the term (( x : y :N)P )Q, the function starting with x and the argument P result in the redex ( x : y :N)P . It is also the case that the function starting with y and the argument Q will result in another redex when the first redex is contracted. This idea has been exploited by many researchers and reduction has been extended so that the generalised redex based on the matching y and Q is given the same priority a...
The LambdaCube With Classes Which Approximate Reductional Equivalence
, 1995
"... We study lambda calculus and refine the notions of fireduction and fiequality. In particular, we define the operation TS (term reshuffling) on terms which reshuffles a term in such a way that more redexes become visible. Two terms are called shuffleequivalent if they have syntactically equivalent ..."
Abstract
 Add to MetaCart
We study lambda calculus and refine the notions of fireduction and fiequality. In particular, we define the operation TS (term reshuffling) on terms which reshuffles a term in such a way that more redexes become visible. Two terms are called shuffleequivalent if they have syntactically equivalent TSimages. The shuffleequivalence classes are shown to divide the classes of fiequal terms into smaller classes consisting of terms with similar reduction behaviour. The refinement of fireduction from a relation on terms to a relation on shuffle classes, called shufflereduction, allows one to make more redexes visible and to contract these newly visible redexes. This enables one to have more freedom in choosing the reduction path of a term, which can result in smaller terms along the reduction path if a clever reduction strategy is used. Moreover, this gain in reductional breadth is not at the expense of reductional length. We show that the cube of [Barendregt 92] extended with shuffle...
: the Preservation
, 1996
"... Postponement of Kcontractions and the conservation theorem do not hold for ordinary but have been established by de Groote for a mixture of with another reduction relation. In this paper, de Groote's results are generalised for a single reduction relation e which generalises . This then is u ..."
Abstract
 Add to MetaCart
Postponement of Kcontractions and the conservation theorem do not hold for ordinary but have been established by de Groote for a mixture of with another reduction relation. In this paper, de Groote's results are generalised for a single reduction relation e which generalises . This then is used to solve an open problem of e
Redexes in Item Notation Classical Notation Item Notation
, 2009
"... • I(λx.B) = [x]I(B) and I(AB) = (I(B))I(A) • I((λx.(λy.xy))z) ≡ (z)[x][y](y)x. The items are (z), [x], [y] and (y). • applicator wagon (z) and abstractor wagon [x] occur NEXT to each other. • A term is a wagon followed by a term. • (β) ..."
Abstract
 Add to MetaCart
• I(λx.B) = [x]I(B) and I(AB) = (I(B))I(A) • I((λx.(λy.xy))z) ≡ (z)[x][y](y)x. The items are (z), [x], [y] and (y). • applicator wagon (z) and abstractor wagon [x] occur NEXT to each other. • A term is a wagon followed by a term. • (β)