Results 1  10
of
341
Diversity and Multiplexing: A Fundamental Tradeoff in Multiple Antenna Channels
 IEEE Trans. Inform. Theory
, 2002
"... Multiple antennas can be used for increasing the amount of diversity or the number of degrees of freedom in wireless communication systems. In this paper, we propose the point of view that both types of gains can be simultaneously obtained for a given multiple antenna channel, but there is a fund ..."
Abstract

Cited by 728 (18 self)
 Add to MetaCart
(Show Context)
Multiple antennas can be used for increasing the amount of diversity or the number of degrees of freedom in wireless communication systems. In this paper, we propose the point of view that both types of gains can be simultaneously obtained for a given multiple antenna channel, but there is a fundamental tradeo# between how much of each any coding scheme can get. For the richly scattered Rayleigh fading channel, we give a simple characterization of the optimal tradeo# curve and use it to evaluate the performance of existing multiple antenna schemes.
HighRate Codes that are Linear in Space and Time
 IEEE Trans. Inform. Theory
, 2000
"... Multipleantenna systems that operate at high rates require simple yet effective spacetime transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, VBLAST, where every antenna transmits its own independent substream of data, has been shown to have good ..."
Abstract

Cited by 334 (12 self)
 Add to MetaCart
(Show Context)
Multipleantenna systems that operate at high rates require simple yet effective spacetime transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, VBLAST, where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet VBLAST suffers from its inability to work with fewer receive antennas than transmit antennasthis deficiency is especially important for modern cellular systems where a basestation typically has more antennas than the mobile handsets. Furthermore, because VBLAST transmits independent data streams on its antennas there is no builtin spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previouslyproposed spacetime codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a highrate coding scheme that can handle any...
Capacity Limits of MIMO Channels
 IEEE J. SELECT. AREAS COMMUN
, 2003
"... We provide an overview of the extensive recent results on the Shannon capacity of singleuser and multiuser multipleinput multipleoutput (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about t ..."
Abstract

Cited by 257 (10 self)
 Add to MetaCart
We provide an overview of the extensive recent results on the Shannon capacity of singleuser and multiuser multipleinput multipleoutput (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about the underlying timevarying channel model and how well it can be tracked at the receiver, as well as at the transmitter. More realistic assumptions can dramatically impact the potential capacity gains of MIMO techniques. For timevarying MIMO channels there are multiple Shannon theoretic capacity definitions and, for each definition, different correlation models and channel information assumptions that we consider. We first provide a comprehensive summary of ergodic and capacity versus outage results for singleuser MIMO channels. These results indicate that the capacity gain obtained from multiple antennas heavily depends
Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent MultipleAntenna Channel
 IEEE Trans. Inform. Theory
, 2002
"... In this paper, we study the capacity of multipleantenna fading channels. We focus on the scenario where the fading coefficients vary quickly; thus an accurate estimation of the coefficients is generally not available to either the transmitter or the receiver. We use a noncoherent block fading model ..."
Abstract

Cited by 186 (5 self)
 Add to MetaCart
(Show Context)
In this paper, we study the capacity of multipleantenna fading channels. We focus on the scenario where the fading coefficients vary quickly; thus an accurate estimation of the coefficients is generally not available to either the transmitter or the receiver. We use a noncoherent block fading model proposed by Marzetta and Hochwald. The model does not assume any channel side information at the receiver or at the transmitter, but assumes that the coefficients remain constant for a coherence interval of length symbol periods. We compute the asymptotic capacity of this channel at high signaltonoise ratio (SNR) in terms of the coherence time , the number of transmit antennas , and the number of receive antennas . While the capacity gain of the coherent multiple antenna channel is min bits per second per hertz for every 3dB increase in SNR, the corresponding gain for the noncoherent channel turns out to be (1 ) bits per second per herz, where = min 2 . The capacity expression has a geometric interpretation as sphere packing in the Grassmann manifold.
Cayley differential unitary space–time codes
 IEEE Trans. Inform. Theory
, 2002
"... One method for communicating with multiple antennas is to encode the transmitted data differentially using unitary matrices at the transmitter, and to decode differentially without knowing the channel coefficients at the receiver. Since channel knowledge is not required at the receiver, differential ..."
Abstract

Cited by 73 (7 self)
 Add to MetaCart
(Show Context)
One method for communicating with multiple antennas is to encode the transmitted data differentially using unitary matrices at the transmitter, and to decode differentially without knowing the channel coefficients at the receiver. Since channel knowledge is not required at the receiver, differential schemes are ideal for use on wireless links where channel tracking is undesirable or infeasible, either because of rapid changes in the channel characteristics or because of limited system resources. Although this basic principle is well understood, it is not known how to generate goodperforming constellations of unitary matrices, for any number of transmit and receive antennas and for any rate. This is especially true at high rates where the constellations must be rapidly encoded and decoded. We propose a class of Cayley codes that works with any number of antennas, and has efficient encoding and decoding at any rate. The codes are named for their use of the Cayley transform, which maps the highly nonlinear Stiefel manifold of unitary matrices to the linear space of skewHermitian matrices. This transformation leads to a simple linear constellation structure in the Cayley transform domain and to an informationtheoretic design criterion based on emulating a Cauchy random matrix. Moreover, the resulting Cayley codes allow polynomialtime nearmaximumlikelihood decoding based on either successive nulling/cancelling or sphere decoding. Simulations show that the Cayley codes allow efficient and effective highrate data transmission in multiantenna communication systems without knowing the channel.
On the design of MIMO blockfading channels with feedbacklink capacity constraint
 IEEE Trans. Commun
, 2004
"... ..."
MultiCell MIMO Cooperative Networks: A New Look at Interference
 J. Selec. Areas in Commun. (JSAC
, 2010
"... Abstract—This paper presents an overview of the theory and currently known techniques for multicell MIMO (multiple input multiple output) cooperation in wireless networks. In dense networks where interference emerges as the key capacitylimiting factor, multicell cooperation can dramatically improv ..."
Abstract

Cited by 49 (18 self)
 Add to MetaCart
(Show Context)
Abstract—This paper presents an overview of the theory and currently known techniques for multicell MIMO (multiple input multiple output) cooperation in wireless networks. In dense networks where interference emerges as the key capacitylimiting factor, multicell cooperation can dramatically improve the system performance. Remarkably, such techniques literally exploit intercell interference by allowing the user data to be jointly processed by several interfering base stations, thus mimicking the benefits of a large virtual MIMO array. Multicell MIMO cooperation concepts are examined from different perspectives, including an examination of the fundamental informationtheoretic limits, a review of the coding and signal processing algorithmic developments, and, going beyond that, consideration of very practical issues related to scalability and systemlevel integration. A few promising and quite fundamental research avenues are also suggested. Index Terms—Cooperation, MIMO, cellular networks, relays, interference, beamforming, coordination, multicell, distributed.
Multipleantenna capacity in the lowpower regime
 IEEE TRANS. INFORM. THEORY
, 2003
"... This paper provides analytical characterizations of the impact on the multipleantenna capacity of several important features that fall outside the standard multipleantenna model, namely: i) antenna correlation, ii) Ricean factors, iii) polarization diversity, and iv) outofcell interference; all ..."
Abstract

Cited by 48 (9 self)
 Add to MetaCart
This paper provides analytical characterizations of the impact on the multipleantenna capacity of several important features that fall outside the standard multipleantenna model, namely: i) antenna correlation, ii) Ricean factors, iii) polarization diversity, and iv) outofcell interference; all in the regime of low signaltonoise ratio. The interplay of rate, bandwidth, and power is analyzed in the region of energy per bit close to its minimum value. The analysis yields practical design lessons for arbitrary number of antennas in the transmit and receive arrays.
MIMO Channel Modelling and the Principle of Maximum Entropy
, 2004
"... In this paper , we devise theoretical grounds for constructing channel models for Multiinput Multioutput (MIMO) systems based on information theoretic tools. The paper provides a general method to derive a channel model which is consistent with one's state of knowledge. The framework we giv ..."
Abstract

Cited by 48 (25 self)
 Add to MetaCart
In this paper , we devise theoretical grounds for constructing channel models for Multiinput Multioutput (MIMO) systems based on information theoretic tools. The paper provides a general method to derive a channel model which is consistent with one's state of knowledge. The framework we give here has already been fruitfully explored with success in the context of Bayesian spectrum analysis and parameter estimation. For each channel model, we conduct an asymptotic analysis (in the number of antennas) of the achievable transmission rate using tools from random matrix theory. A central limit theorem is provided on the asymptotic behavior of the mutual information and validated in the finite case by simulations. The results are both useful in terms of designing a system based on criteria such as quality of service and in optimizing transmissions in multiuser networks .
Pilot Assisted Wireless Transmissions
 IEEE Signal Processing Mag
, 2004
"... The design of pilot assisted wireless transmissions is considered from signal processing and information theoretical perspectives. A general pilot placement model is presented and related figures of merit discussed. A survey of recent pilot assisted transmission theory and techniques is provided. ..."
Abstract

Cited by 45 (2 self)
 Add to MetaCart
The design of pilot assisted wireless transmissions is considered from signal processing and information theoretical perspectives. A general pilot placement model is presented and related figures of merit discussed. A survey of recent pilot assisted transmission theory and techniques is provided.