Results 1  10
of
64
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 337 (18 self)
 Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerical properties. Reliable stopping criteria are derived, along with estimates of standard errors for x and the condition number of A. These are used in the FORTRAN implementation of the method, subroutine LSQR. Numerical tests are described comparing I~QR with several other conjugategradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Numerical solution of the stable, nonnegative definite Lyapunov equation
 IMA J. Numer. Anal
, 1982
"... We discuss the numerical solution of the Lyapunov equation ..."
Abstract

Cited by 87 (2 self)
 Add to MetaCart
We discuss the numerical solution of the Lyapunov equation
A Multistage Representation of the Wiener Filter Based on Orthogonal Projections
 IEEE Transactions on Information Theory
, 1998
"... The Wiener filter is analyzed for stationary complex Gaussian signals from an informationtheoretic point of view. A dualport analysis of the Wiener filter leads to a decomposition based on orthogonal projections and results in a new multistage method for implementing the Wiener filter using a nest ..."
Abstract

Cited by 42 (3 self)
 Add to MetaCart
The Wiener filter is analyzed for stationary complex Gaussian signals from an informationtheoretic point of view. A dualport analysis of the Wiener filter leads to a decomposition based on orthogonal projections and results in a new multistage method for implementing the Wiener filter using a nested chain of scalar Wiener filters. This new representation of the Wiener filter provides the capability to perform an informationtheoretic analysis of previous, basisdependent, reducedrank Wiener filters. This analysis demonstrates that the recently introduced crossspectral metric is optimal in the sense that it maximizes mutual information between the observed and desired processes. A new reducedrank Wiener filter is developed based on this new structure which evolves a basis using successive projections of the desired signal onto orthogonal, lower dimensional subspaces. The performance is evaluated using a comparative computer analysis model and it is demonstrated that the lowcomplexity multistage reducedrank Wiener filter is capable of outperforming the more complex eigendecompositionbased methods.
Incremental condition estimation
 SIAM J. Matrix Anal. Appl
, 1990
"... Abstract. This paper presents an improved version of incremental condition estimation, a technique for tracking the extremal singular values of a triangular matrix as it is being constructed one column at a time. We present a new motivation for this estimation technique using orthogonal projections. ..."
Abstract

Cited by 41 (2 self)
 Add to MetaCart
Abstract. This paper presents an improved version of incremental condition estimation, a technique for tracking the extremal singular values of a triangular matrix as it is being constructed one column at a time. We present a new motivation for this estimation technique using orthogonal projections. The paper focuses on an implementation of this estimation scheme in an accurate and consistent fashion. In particular, we address the subtle numerical issues arising in the computation of the eigensystem of a symmetric rankone perturbed diagonal 2 2 matrix. Experimental results show that the resulting scheme does a good job in estimating the extremal singular values of triangular matrices, independent of matrix size and matrix condition number, and that it performs qualitatively in the same fashion as some of the commonly used nonincremental condition estimation schemes. AMS(MOS) subject classi cations. 65F35, 65F05 Key words. Condition number, singular values, incremental condition estimation. 1
RELATIVEERROR CUR MATRIX DECOMPOSITIONS
 SIAM J. MATRIX ANAL. APPL
, 2008
"... Many data analysis applications deal with large matrices and involve approximating the matrix using a small number of “components.” Typically, these components are linear combinations of the rows and columns of the matrix, and are thus difficult to interpret in terms of the original features of the ..."
Abstract

Cited by 39 (9 self)
 Add to MetaCart
Many data analysis applications deal with large matrices and involve approximating the matrix using a small number of “components.” Typically, these components are linear combinations of the rows and columns of the matrix, and are thus difficult to interpret in terms of the original features of the input data. In this paper, we propose and study matrix approximations that are explicitly expressed in terms of a small number of columns and/or rows of the data matrix, and thereby more amenable to interpretation in terms of the original data. Our main algorithmic results are two randomized algorithms which take as input an m × n matrix A and a rank parameter k. In our first algorithm, C is chosen, and we let A ′ = CC + A, where C + is the Moore–Penrose generalized inverse of C. In our second algorithm C, U, R are chosen, and we let A ′ = CUR. (C and R are matrices that consist of actual columns and rows, respectively, of A, and U is a generalized inverse of their intersection.) For each algorithm, we show that with probability at least 1 − δ, ‖A − A ′ ‖F ≤ (1 + ɛ) ‖A − Ak‖F, where Ak is the “best ” rankk approximation provided by truncating the SVD of A, and where ‖X‖F is the Frobenius norm of the matrix X. The number of columns of C and rows of R is a lowdegree polynomial in k, 1/ɛ, and log(1/δ). Both the Numerical Linear Algebra community and the Theoretical Computer Science community have studied variants
The LCurve and its Use in the Numerical Treatment of Inverse Problems
 in Computational Inverse Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering
, 2000
"... The Lcurve is a loglog plot of the norm of a regularized solution versus the norm of the corresponding residual norm. It is a convenient graphical tool for displaying the tradeoff between the size of a regularized solution and its fit to the given data, as the regularization parameter varies. The ..."
Abstract

Cited by 29 (2 self)
 Add to MetaCart
The Lcurve is a loglog plot of the norm of a regularized solution versus the norm of the corresponding residual norm. It is a convenient graphical tool for displaying the tradeoff between the size of a regularized solution and its fit to the given data, as the regularization parameter varies. The Lcurve thus gives insight into the regularizing properties of the underlying regularization method, and it is an aid in choosing an appropriate regularization parameter for the given data. In this chapter we summarize the main properties of the Lcurve, and demonstrate by examples its usefulness and its limitations both as an analysis tool and as a method for choosing the regularization parameter. 1 Introduction Practically all regularization methods for computing stable solutions to inverse problems involve a tradeoff between the "size" of the regularized solution and the quality of the fit that it provides to the given data. What distinguishes the various regularization methods is how...
An Improved Approximation Algorithm for the Column Subset Selection Problem
"... We consider the problem of selecting the “best ” subset of exactly k columns from an m × n matrix A. In particular, we present and analyze a novel twostage algorithm that runs in O(min{mn 2, m 2 n}) time and returns as output an m × k matrix C consisting of exactly k columns of A. In the first stag ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
We consider the problem of selecting the “best ” subset of exactly k columns from an m × n matrix A. In particular, we present and analyze a novel twostage algorithm that runs in O(min{mn 2, m 2 n}) time and returns as output an m × k matrix C consisting of exactly k columns of A. In the first stage (the randomized stage), the algorithm randomly selects O(k log k) columns according to a judiciouslychosen probability distribution that depends on information in the topk right singular subspace of A. In the second stage (the deterministic stage), the algorithm applies a deterministic columnselection procedure to select and return exactly k columns from the set of columns selected in the first stage. Let C be the m × k matrix containing those k columns, let PC denote the projection matrix onto the span of those columns, and let Ak denote the “best ” rankk approximation to the matrix A as computed with the singular value decomposition. Then, we prove that ‖A − PCA‖2 ≤ O k 3 4 log 1
Computing RankRevealing QR Factorizations of Dense Matrices
 Argonne Preprint ANLMCSP5590196, Argonne National Laboratory
, 1996
"... this paper, and we give only a brief synopsis here. For details, the reader is referred to the code. Test matrices 1 through 5 were designed to exercise column pivoting. Matrix 6 was designed to test the behavior of the condition estimation in the presence of clusters for the smallest singular value ..."
Abstract

Cited by 26 (1 self)
 Add to MetaCart
this paper, and we give only a brief synopsis here. For details, the reader is referred to the code. Test matrices 1 through 5 were designed to exercise column pivoting. Matrix 6 was designed to test the behavior of the condition estimation in the presence of clusters for the smallest singular value. For the other cases, we employed the LAPACK matrix generator xLATMS, which generates random symmetric matrices by multiplying a diagonal matrix with prescribed singular values by random orthogonal matrices from the left and right. For the break1 distribution, all singular values are 1.0 except for one. In the arithmetic and geometric distributions, they decay from 1.0 to a specified smallest singular value in an arithmetic and geometric fashion, respectively. In the "reversed" distributions, the order of the diagonal entries was reversed. For test cases 7 though 12, we used xLATMS to generate a matrix of order
Sparse Multifrontal Rank Revealing QR Factorization
 SIAM J. Matrix Anal. Appl
, 1995
"... We describe an algorithm to compute a rank revealing sparse QR factorization. We augment a basic sparse multifrontal QR factorization with an incremental condition estimator to provide an estimate of the least singular value and vector for each successive column of R. We remove a column from R as ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
We describe an algorithm to compute a rank revealing sparse QR factorization. We augment a basic sparse multifrontal QR factorization with an incremental condition estimator to provide an estimate of the least singular value and vector for each successive column of R. We remove a column from R as soon as the condition estimate exceeds a tolerance, using the approximate singular vector to select a suitable column. Removing columns, or pivoting, requires a dynamic data structure and necessarily degrades sparsity. But most of the additional work fits naturally into the multifrontal factorization's use of efficient dense vector kernels, minimizing overall cost. Further, pivoting as soon as possible reduces the cost of pivot selection and data access. We present a theoretical analysis that shows that our use of approximate singular vectors does not degrade the quality of our rankrevealing factorization; we achieve an exponential bound like methods that use exact singular vectors. We prov...