Results 1  10
of
14
Design of capacityapproaching irregular lowdensity paritycheck codes
 IEEE TRANS. INFORM. THEORY
, 2001
"... We design lowdensity paritycheck (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on [1]. Assuming that the unde ..."
Abstract

Cited by 438 (7 self)
 Add to MetaCart
We design lowdensity paritycheck (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on [1]. Assuming that the underlying communication channel is symmetric, we prove that the probability densities at the message nodes of the graph possess a certain symmetry. Using this symmetry property we then show that, under the assumption of no cycles, the message densities always converge as the number of iterations tends to infinity. Furthermore, we prove a stability condition which implies an upper bound on the fraction of errors that a beliefpropagation decoder can correct when applied to a code induced from a bipartite graph with a given degree distribution. Our codes are found by optimizing the degree structure of the underlying graphs. We develop several strategies to perform this optimization. We also present some simulation results for the codes found which show that the performance of the codes is very close to the asymptotic theoretical bounds.
On the Optimality of Solutions of the MaxProduct Belief Propagation Algorithm in Arbitrary Graphs
, 2001
"... Graphical models, suchasBayesian networks and Markov random fields, represent statistical dependencies of variables by a graph. The maxproduct "belief propagation" algorithm is a localmessage passing algorithm on this graph that is known to converge to a unique fixed point when the graph is a tr ..."
Abstract

Cited by 185 (15 self)
 Add to MetaCart
Graphical models, suchasBayesian networks and Markov random fields, represent statistical dependencies of variables by a graph. The maxproduct "belief propagation" algorithm is a localmessage passing algorithm on this graph that is known to converge to a unique fixed point when the graph is a tree. Furthermore, when the graph is a tree, the assignment based on the fixedpoint yields the most probable a posteriori (MAP) values of the unobserved variables given the observed ones. Recently, good
MAP estimation via agreement on trees: Messagepassing and linear programming
, 2002
"... We develop and analyze methods for computing provably optimal maximum a posteriori (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of treestructured distributions, we obtain an upper bound ..."
Abstract

Cited by 132 (8 self)
 Add to MetaCart
We develop and analyze methods for computing provably optimal maximum a posteriori (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of treestructured distributions, we obtain an upper bound on the optimal value of the original problem (i.e., the log probability of the MAP assignment) in terms of the combined optimal values of the tree problems. We prove that this upper bound is tight if and only if all the tree distributions share an optimal configuration in common. An important implication is that any such shared configuration must also be a MAP configuration for the original distribution. Next we develop two approaches to attempting to obtain tight upper bounds: (a) a treerelaxed linear program (LP), which is derived from the Lagrangian dual of the upper bounds; and (b) a treereweighted maxproduct messagepassing algorithm that is related to but distinct from the maxproduct algorithm. In this way, we establish a connection between a certain LP relaxation of the modefinding problem, and a reweighted form of the maxproduct (minsum) messagepassing algorithm.
MAP estimation via agreement on (hyper)trees: Messagepassing and linear programming approaches
 IEEE Transactions on Information Theory
, 2002
"... We develop an approach for computing provably exact maximum a posteriori (MAP) configurations for a subclass of problems on graphs with cycles. By decomposing the original problem into a convex combination of treestructured problems, we obtain an upper bound on the optimal value of the original ..."
Abstract

Cited by 108 (11 self)
 Add to MetaCart
We develop an approach for computing provably exact maximum a posteriori (MAP) configurations for a subclass of problems on graphs with cycles. By decomposing the original problem into a convex combination of treestructured problems, we obtain an upper bound on the optimal value of the original problem (i.e., the log probability of the MAP assignment) in terms of the combined optimal values of the tree problems. We prove that this upper bound is met with equality if and only if the tree problems share an optimal configuration in common. An important implication is that any such shared configuration must also be a MAP configuration for the original problem. Next we present and analyze two methods for attempting to obtain tight upper bounds: (a) a treereweighted messagepassing algorithm that is related to but distinct from the maxproduct (minsum) algorithm; and (b) a treerelaxed linear program (LP), which is derived from the Lagrangian dual of the upper bounds. Finally, we discuss the conditions that govern when the relaxation is tight, in which case the MAP configuration can be obtained. The analysis described here generalizes naturally to convex combinations of hypertreestructured distributions.
Tree Consistency and Bounds on the Performance of the MaxProduct Algorithm and Its Generalizations
, 2002
"... Finding the maximum a posteriori (MAP) assignment of a discretestate distribution specified by a graphical model requires solving an integer program. The maxproduct algorithm, also known as the maxplus or minsum algorithm, is an iterative method for (approximately) solving such a problem on gr ..."
Abstract

Cited by 55 (5 self)
 Add to MetaCart
Finding the maximum a posteriori (MAP) assignment of a discretestate distribution specified by a graphical model requires solving an integer program. The maxproduct algorithm, also known as the maxplus or minsum algorithm, is an iterative method for (approximately) solving such a problem on graphs with cycles.
Maximum weight matching via maxproduct belief propagation
 in International Symposium of Information Theory
, 2005
"... Abstract — The maxproduct “belief propagation ” algorithm is an iterative, local, message passing algorithm for finding the maximum a posteriori (MAP) assignment of a discrete probability distribution specified by a graphical model. Despite the spectacular success of the algorithm in many applicati ..."
Abstract

Cited by 46 (7 self)
 Add to MetaCart
Abstract — The maxproduct “belief propagation ” algorithm is an iterative, local, message passing algorithm for finding the maximum a posteriori (MAP) assignment of a discrete probability distribution specified by a graphical model. Despite the spectacular success of the algorithm in many application areas such as iterative decoding and computer vision which involve graphs with many cycles, theoretical convergence results are only known for graphs which are treelike or have a single cycle. In this paper, we consider a weighted complete bipartite graph and define a probability distribution on it whose MAP assignment corresponds to the maximum weight matching (MWM) in that graph. We analyze the fixed points of the maxproduct algorithm when run on this graph and prove the surprising result that even though the underlying graph has many short cycles, the maxproduct assignment converges to the correct MAP assignment. We also provide a bound on the number of iterations required by the algorithm. I.
Structure of pseudocodewords in Tanner graphs
 Proceedings of 2004 International Symposium on Information Theory and its Applications, p. CDROM
, 2004
"... This papers presents a detailed analysis of pseudocodewords of Tanner graphs. Pseudocodewords arising on the iterative decoder’s computation tree are distinguished from pseudocodewords arising on finite degree lifts. Lower bounds on the minimum pseudocodeword weight are presented for the BEC, BSC, a ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
This papers presents a detailed analysis of pseudocodewords of Tanner graphs. Pseudocodewords arising on the iterative decoder’s computation tree are distinguished from pseudocodewords arising on finite degree lifts. Lower bounds on the minimum pseudocodeword weight are presented for the BEC, BSC, and AWGN channel. Some structural properties of pseudocodewords are examined, and pseudocodewords and graph properties that are potentially problematic with minsum iterative decoding are identified. An upper bound on the minimum degree lift needed to realize a particular irreducible liftrealizable pseudocodeword is given in terms of its maximal component, and it is shown that all irreducible liftrealizable pseudocodewords have components upper bounded by a finite value t that is dependent on the graph structure. Examples and different Tanner graph representations of individual codes are examined and the resulting pseudocodeword distributions and iterative decoding performances are analyzed. The results obtained provide some insights in relating the structure of the Tanner graph to the pseudocodeword distribution and suggest ways of designing Tanner graphs with good minimum pseudocodeword weight. Index Terms Low density parity check codes, pseudocodewords, iterative decoding, minsum iterative decoder.
Pseudocodeword Weights and Stopping Sets
 In Proc. of the IEEE International Symposium on Information Theory
, 2004
"... Abstract — We examine the structure of pseudocodewords in Tanner graphs and derive lower bounds of pseudocodeword weights. The weight of a pseudocodeword is related to the size of its support set, which forms a stopping set in the Tanner graph. I. ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
Abstract — We examine the structure of pseudocodewords in Tanner graphs and derive lower bounds of pseudocodeword weights. The weight of a pseudocodeword is related to the size of its support set, which forms a stopping set in the Tanner graph. I.
Belief Propagation for Mincost Network Flow: Convergence & Correctness
"... We formulate a Belief Propagation (BP) algorithm in the context of the capacitated minimumcost network flow problem (MCF). Unlike most of the instances of BP studied in the past, the messages of BP in the context of this problem are piecewiselinear functions. We prove that BP converges to the opti ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
We formulate a Belief Propagation (BP) algorithm in the context of the capacitated minimumcost network flow problem (MCF). Unlike most of the instances of BP studied in the past, the messages of BP in the context of this problem are piecewiselinear functions. We prove that BP converges to the optimal solution in pseudopolynomial time, provided that the optimal solution is unique and the problem input is integral. Moreover, we present a simple modification of the BP algorithm which gives a fully polynomialtime randomized approximation scheme (FPRAS) for MCF. Thisisthe first instance where BP is proved to have fullypolynomial running time. 1