Results 11  20
of
64
Discovering auxiliary information for incremental computation
 In Symp. on Princ. of Prog. Lang
, 1996
"... This paper presents program analyses and transformations that discover a general class of auxiliary information for any incremental computation problem. Combining these techniques with previous techniques for caching intermediate results, we obtain a systematic approach that transforms nonincrementa ..."
Abstract

Cited by 22 (12 self)
 Add to MetaCart
This paper presents program analyses and transformations that discover a general class of auxiliary information for any incremental computation problem. Combining these techniques with previous techniques for caching intermediate results, we obtain a systematic approach that transforms nonincremental programs into e cient incremental programs that use and maintain useful auxiliary information as well as useful intermediate results. The use of auxiliary information allows us to achieve a greater degree of incrementality than otherwise possible. Applications of the approach i nclude strength reduction in optimizing compilers and nite di erencing in transformational programming. 1
Type Theory and Programming
, 1994
"... This paper gives an introduction to type theory, focusing on its recent use as a logical framework for proofs and programs. The first two sections give a background to type theory intended for the reader who is new to the subject. The following presents MartinLof's monomorphic type theory and an im ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
This paper gives an introduction to type theory, focusing on its recent use as a logical framework for proofs and programs. The first two sections give a background to type theory intended for the reader who is new to the subject. The following presents MartinLof's monomorphic type theory and an implementation, ALF, of this theory. Finally, a few small tutorial examples in ALF are given.
Synthesizing proofs from programs in the Calculus of Inductive Constructions
 In Proceedings of the International Conference on Mathematics for Programs Constructions. SpringerVerlag LNCS 947
, 1995
"... . We want to prove "automatically" that a program is correct with respect to a set of given properties that is a specification. Proofs of specifications contain logical parts and computational parts. Programs can be seen as computational parts of proofs. They can then be extracted from proofs and be ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
. We want to prove "automatically" that a program is correct with respect to a set of given properties that is a specification. Proofs of specifications contain logical parts and computational parts. Programs can be seen as computational parts of proofs. They can then be extracted from proofs and be certified to be correct. We focus on the inverse problem : is it possible to reconstruct proof obligations from a program and its specification ? The framework is the type theory where a proof can be represented as a typed term [Con86, NPS90] and particularly the Calculus of Inductive Constructions [Coq85]. A notion of coherence is introduced between a specification and a program containing annotations as in the Hoare sense. This notion is based on the definition of an extraction function called the weak extraction. Such an annotated program can give a method to reconstruct a set of proof obligations needed to have a proof of the initial specification. This can be seen either as a method o...
Methods  The Basic Units for Planning and Verifying Proofs
 In Proceedings of Jahrestagung fur Kunstliche Intelligenz, Saarbrucken
, 1992
"... This paper concerns a knowledge structure called method , within a computational model for human oriented deduction. With human oriented theorem proving cast as an interleaving process of planning and verification, the body of all methods reflects the reasoning repertoire of a reasoning system. Whil ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
This paper concerns a knowledge structure called method , within a computational model for human oriented deduction. With human oriented theorem proving cast as an interleaving process of planning and verification, the body of all methods reflects the reasoning repertoire of a reasoning system. While we adopt the general structure of methods introduced by Alan Bundy, we make an essential advancement in that we strictly separate the declarative knowledge from the procedural knowledge. This is achieved by postulating some standard types of knowledge we have identified, such as inference rules, assertions, and proof schemata, together with corresponding knowledge interpreters. Our approach in effect changes the way deductive knowledge is encoded: A new compound declarative knowledge structure, the proof schema, takes the place of complicated procedures for modeling specific proof strategies. This change of paradigm not only leads to representations easier to understand, it also enables us...
The Early Search for Tractable Ways of Reasoning About Programs
 IEEE Annals of the History of Computing
, 2003
"... This paper traces the important steps in the history up to around 1990 of research on reasoning about programs. The main focus is on sequential imperative programs but some comments are made on concurrency. Initially, researchers focussed on ways of verifying that a program satisfies its specifi ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
This paper traces the important steps in the history up to around 1990 of research on reasoning about programs. The main focus is on sequential imperative programs but some comments are made on concurrency. Initially, researchers focussed on ways of verifying that a program satisfies its specification (or that two programs were equivalent). Over time it became clear that post facto verification is only practical for small programs and attention turned to verification methods which support the development of programs; for larger programs it is necessary to exploit a notation of compositionality. Coping with concurrent algorithms is much more challenging  this and other extensions are considered briefly. The main thesis of this paper is that the idea of reasoning about programs has been around since they were first written; the search has been to find tractable methods.
Implementing a Model Checker for LEGO
 Proc. of the 4th Inter Symp. of Formal Methods Europe, FME'97: Industrial Applications and Strengthened Foundations of Formal Methods
, 1997
"... . Interactive theorem proving gives a general approach for modelling and verification of both hardware and software systems but requires significant human efforts to deal with many tedious proofs. To be used in practical, we need some automatic tools such as model checkers to deal with those tedious ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
. Interactive theorem proving gives a general approach for modelling and verification of both hardware and software systems but requires significant human efforts to deal with many tedious proofs. To be used in practical, we need some automatic tools such as model checkers to deal with those tedious proofs. In this paper, we formalise a verification system of both CCS and an imperative language in LEGO which can be used to verify both finite and infinite problems. Then a model checker, LegoMC, is implemented to generate the LEGO proof terms of finite models automatically. Therefore people can use LEGO to verify a general problem and throw some finite subproblems to be verified by LegoMC. On the other hand, this integration extends the power of model checking to verify more complicated and infinite models as well. 1 Introduction Interactive theorem proving gives a general approach for modelling and verification of both hardware and software systems but requires significant human effor...
Experiments with ZF Set Theory in HOL and Isabelle
 IN PROCEEDINGS OF THE 8TH INTERNATIONAL WORKSHOP ON HIGHER ORDER LOGIC THEOREM PROVING AND ITS APPLICATIONS, LNCS
, 1995
"... Most general purpose proof assistants support versions of typed higher order logic. Experience has shown that these logics are capable of representing most of the mathematical models needed in Computer Science. However, perhaps there exist applications where ZFstyle set theory is more natural, ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
Most general purpose proof assistants support versions of typed higher order logic. Experience has shown that these logics are capable of representing most of the mathematical models needed in Computer Science. However, perhaps there exist applications where ZFstyle set theory is more natural, or even necessary. Examples may include Scott's classical inverselimit construction of a model of the untyped  calculus (D1 ) and the semantics of parts of the Z specification notation. This paper
Ats: A language that combines programming with theorem proving
 of Lecture Notes in Computer Science
, 2005
"... Abstract. ATS is a language with a highly expressive type system that supports a restricted form of dependent types in which programs are not allowed to appear in type expressions. The language is separated into two components: a proof language in which (inductive) proofs can be encoded as (total re ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
Abstract. ATS is a language with a highly expressive type system that supports a restricted form of dependent types in which programs are not allowed to appear in type expressions. The language is separated into two components: a proof language in which (inductive) proofs can be encoded as (total recursive) functions that are erased before execution, and a programming language for constructing programs to be evaluated. This separation enables a paradigm that combines programming with theorem proving. In this paper, we illustrate by example how this programming paradigm is supported in ATS.
Developing certified programs in the system Coq  The Program tactic
, 1993
"... The system Coq is an environment for proof development based on the Calculus of Constructions extended by inductive definitions. Functional programs can be extracted from constructive proofs written in Coq. The extracted program and its corresponding proof are strongly related. The idea in this p ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
The system Coq is an environment for proof development based on the Calculus of Constructions extended by inductive definitions. Functional programs can be extracted from constructive proofs written in Coq. The extracted program and its corresponding proof are strongly related. The idea in this paper is to use this link to have another approach: to give a program and to generate automatically the proof from which it could be extracted. Moreover, we introduce a notion of annotated programs.