Results 1  10
of
184
Mahler's Measure and Special Values of Lfunctions
, 1998
"... this paper is to describe an attempt to understand and generalize a recent formula of Deninger [1997] by means of systematic numerical experiment. This conjectural formula, ..."
Abstract

Cited by 63 (1 self)
 Add to MetaCart
this paper is to describe an attempt to understand and generalize a recent formula of Deninger [1997] by means of systematic numerical experiment. This conjectural formula,
Modularity of certain potentially BarsottiTate Galois representations
 J. Amer. Math. Soc
, 1999
"... Conjectures of Langlands, Fontaine and Mazur [22] predict that certain Galois representations ρ: Gal(Q/Q) → GL2(Qℓ) (where ℓ denotes a fixed prime) should arise from modular forms. This applies in particular to representations defined by the action of Gal(Q/Q) on the ℓadic Tate ..."
Abstract

Cited by 61 (6 self)
 Add to MetaCart
Conjectures of Langlands, Fontaine and Mazur [22] predict that certain Galois representations ρ: Gal(Q/Q) → GL2(Qℓ) (where ℓ denotes a fixed prime) should arise from modular forms. This applies in particular to representations defined by the action of Gal(Q/Q) on the ℓadic Tate
Fermat’s Last Theorem
 Current Developments in Mathematics
, 1995
"... The authors would like to give special thanks to N. Boston, K. Buzzard, and B. Conrad for providing so much valuable feedback on earlier versions of this ..."
Abstract

Cited by 55 (10 self)
 Add to MetaCart
The authors would like to give special thanks to N. Boston, K. Buzzard, and B. Conrad for providing so much valuable feedback on earlier versions of this
The CasselsTate Pairing On Polarized Abelian Varieties
 Ann. of Math
, 1998
"... . Let (A; ) be a principally polarized abelian variety dened over a global eld k, and let X(A) be its Shafarevich{Tate group. Let X(A) nd denote the quotient of X(A) by its maximal divisible subgroup. Cassels and Tate constructed a nondegenerate pairing X(A) nd X(A) nd ! Q=Z : If A is an ellip ..."
Abstract

Cited by 43 (14 self)
 Add to MetaCart
. Let (A; ) be a principally polarized abelian variety dened over a global eld k, and let X(A) be its Shafarevich{Tate group. Let X(A) nd denote the quotient of X(A) by its maximal divisible subgroup. Cassels and Tate constructed a nondegenerate pairing X(A) nd X(A) nd ! Q=Z : If A is an elliptic curve, then by a result of Cassels' the pairing is alternating. But in general it is only antisymmetric. Using some new but equivalent denitions of the pairing, we derive general criteria deciding whether it is alternating and whether there exists some alternating nondegenerate pairing on X(A) nd . These criteria are expressed in terms of an element c 2 X(A) nd that is canonically associated to the polarization . In the case that A is the Jacobian of some curve, a downtoearth version of the result allows us to determine eectively whether #X(A) (if nite) is a square or twice a square. We then apply this to prove that a positive proportion (in some precise sense) of all hyperell...
Large Torsion Subgroups Of Split Jacobians Of Curves Of Genus Two Or Three
 FORUM MATH
, 1998
"... We construct examples of families of curves of genus 2 or 3 over Q whose Jacobians split completely and have various large rational torsion subgroups. For example, the rational points on a certain elliptic surface over P of positive rank parameterize a family of genus2 curves over Q whose Jac ..."
Abstract

Cited by 32 (7 self)
 Add to MetaCart
We construct examples of families of curves of genus 2 or 3 over Q whose Jacobians split completely and have various large rational torsion subgroups. For example, the rational points on a certain elliptic surface over P of positive rank parameterize a family of genus2 curves over Q whose Jacobians each have 128 rational torsion points. Also, we find the genus3 curve ) = 0, whose Jacobian has 864 rational torsion points.
Ternary Diophantine equations via Galois representations and modular forms
 CANAD J. MATH
, 2004
"... In this paper, we develop techniques for solving ternary Diophantine equations of the shape Ax n + By n = Cz 2, based upon the theory of Galois representations and modular forms. We subsequently utilize these methods to completely solve such equations for various choices of the parameters A, B and C ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
In this paper, we develop techniques for solving ternary Diophantine equations of the shape Ax n + By n = Cz 2, based upon the theory of Galois representations and modular forms. We subsequently utilize these methods to completely solve such equations for various choices of the parameters A, B and C. We conclude with an application of our results to certain classical polynomialexponential equations, such as those of Ramanujan–Nagell type.
Visible evidence in the Birch and SwinnertonDyer Conjecture for modular abelian varieties of analytic rank zero
, 2004
"... This paper provides evidence for the Birch and SwinnertonDyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af, 1)/ΩA, develop tools for computing with Af, and gather data about f certain arithmetic ..."
Abstract

Cited by 23 (15 self)
 Add to MetaCart
This paper provides evidence for the Birch and SwinnertonDyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af, 1)/ΩA, develop tools for computing with Af, and gather data about f certain arithmetic invariants of the nearly 20, 000 abelian varieties Af of level ≤ 2333. Over half of these Af have analytic rank 0, and for these we compute upper and lower bounds on the conjectural order of �(Af). We find that there are at least 168 such Af for which the Birch and SwinnertonDyer conjecture implies that �(Af) is divisible by an odd prime, and we prove for 37 of these that the odd part of the conjectural order of �(Af) really divides # �(Af) by constructing nontrivial elements of �(Af) using visibility theory. We also give other evidence for the conjecture. The appendix, by Cremona and Mazur, fills in some gaps in the theoretical discussion in their paper on visibility of ShafarevichTate groups of elliptic curves.
Explicit 4descents on an elliptic curve
 Acta Arith
, 1996
"... Abstract. It is shown that the obvious method of descending from an element of the 2Selmer group of an elliptic curve, E, will indeed give elements of order 1, 2 or 4 in the WeilChatelet group of E. Explicit algorithms for such a method are given. 1. ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
Abstract. It is shown that the obvious method of descending from an element of the 2Selmer group of an elliptic curve, E, will indeed give elements of order 1, 2 or 4 in the WeilChatelet group of E. Explicit algorithms for such a method are given. 1.