Results 1 
9 of
9
The Tile Model
 PROOF, LANGUAGE AND INTERACTION: ESSAYS IN HONOUR OF ROBIN MILNER
, 1996
"... In this paper we introduce a model for a wide class of computational systems, whose behaviour can be described by certain rewriting rules. We gathered our inspiration both from the world of term rewriting, in particular from the rewriting logic framework [Mes92], and of concurrency theory: among the ..."
Abstract

Cited by 65 (24 self)
 Add to MetaCart
In this paper we introduce a model for a wide class of computational systems, whose behaviour can be described by certain rewriting rules. We gathered our inspiration both from the world of term rewriting, in particular from the rewriting logic framework [Mes92], and of concurrency theory: among the others, the structured operational semantics [Plo81], the context systems [LX90] and the structured transition systems [CM92] approaches. Our model recollects many properties of these sources: first, it provides a compositional way to describe both the states and the sequences of transitions performed by a given system, stressing their distributed nature. Second, a suitable notion of typed proof allows to take into account also those formalisms relying on the notions of synchronization and sideeffects to determine the actual behaviour of a system. Finally, an equivalence relation over sequences of transitions is defined, equipping the system under analysis with a concurrent semantics, ...
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by S ..."
Abstract

Cited by 43 (10 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
An Algebraic Presentation of Term Graphs, via GSMonoidal Categories
 Applied Categorical Structures
, 1999
"... . We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particula ..."
Abstract

Cited by 37 (24 self)
 Add to MetaCart
. We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particular, we show that term graphs over a signature \Sigma are onetoone with the arrows of the free gsmonoidal category generated by \Sigma. Such a category satisfies all the axioms for Cartesian categories but for the naturality of two transformations (the discharger ! and the duplicator r), providing in this way an abstract and clear relationship between terms and term graphs. In particular, the absence of the naturality of r and ! has a precise interpretation in terms of explicit sharing and of loss of implicit garbage collection, respectively. Keywords: algebraic theories, directed acyclic graphs, gsmonoidal categories, symmetric monoidal categories, term graphs. Mathematical Subject Clas...
A BiCategorical Axiomatisation of Concurrent Graph Rewriting
, 1999
"... In this paper the concurrent semantics of doublepushout (DPO) graph rewriting, which is classically defined in terms of shiftequivalence classes of graph derivations, is axiomatised via the construction of a free monoidal bicategory. In contrast to a previous attempt based on 2categories, the us ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
In this paper the concurrent semantics of doublepushout (DPO) graph rewriting, which is classically defined in terms of shiftequivalence classes of graph derivations, is axiomatised via the construction of a free monoidal bicategory. In contrast to a previous attempt based on 2categories, the use of bicategories allows to define rewriting on concrete graphs. Thus, the problem of composition of isomorphism classes of rewriting sequences is avoided. Moreover, as a first step towards the recovery of the full expressive power of the formalism via a purely algebraic description, the concept of disconnected rules is introduced, i.e., rules whose interface graphs are made of disconnected nodes and edges only. It is proved that, under reasonable assumptions, rewriting via disconnected rules enjoys similar concurrency properties like in the classical approach.
Rewriting On Cyclic Structures: Equivalence Between The Operational And The Categorical Description
, 1999
"... . We present a categorical formulation of the rewriting of possibly cyclic term graphs, based on a variation of algebraic 2theories. We show that this presentation is equivalent to the wellaccepted operational definition proposed by Barendregt et aliibut for the case of circular redexes, fo ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
. We present a categorical formulation of the rewriting of possibly cyclic term graphs, based on a variation of algebraic 2theories. We show that this presentation is equivalent to the wellaccepted operational definition proposed by Barendregt et aliibut for the case of circular redexes, for which we propose (and justify formally) a different treatment. The categorical framework allows us to model in a concise way also automatic garbage collection and rules for sharing/unsharing and folding/unfolding of structures, and to relate term graph rewriting to other rewriting formalisms. R'esum'e. Nous pr'esentons une formulation cat'egorique de la r'e'ecriture des graphes cycliques des termes, bas'ee sur une variante de 2theorie alg'ebrique. Nous prouvons que cette pr'esentation est 'equivalente `a la d'efinition op'erationnelle propos'ee par Barendregt et d'autres auteurs, mais pas dons le cas des radicaux circulaires, pour lesquels nous proposons (et justifions formellem...
Observing reductions in nominal calculi via a graphical encoding of processes
 Processes, terms and cycles (Klop Festschrift), volume 3838 of LNCS
"... Abstract. The paper introduces a novel approach to the synthesis of labelled transition systems for calculi with name mobility. The proposal is based on a graphical encoding: Each process is mapped into a (ranked) graph, such that the denotation is fully abstract with respect to the usual structural ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
Abstract. The paper introduces a novel approach to the synthesis of labelled transition systems for calculi with name mobility. The proposal is based on a graphical encoding: Each process is mapped into a (ranked) graph, such that the denotation is fully abstract with respect to the usual structural congruence (i.e., two processes are equivalent exactly when the corresponding encodings yield the same graph). Ranked graphs are naturally equipped with a few algebraic operations, and they are proved to form a suitable (bi)category of cospans. Then, as proved by Sassone and Sobocinski, the synthesis mechanism based on relative pushout, originally proposed by Milner and Leifer, can be applied. The resulting labelled transition system has ranked graphs as both states and labels, and it induces on (encodings of) processes an observational equivalence that is reminiscent of early bisimilarity.
Rewriting on Cyclic Structures
 Extended abstract in Fixed Points in Computer Science, satellite workshop of MFCS'98
, 1998
"... We present a categorical formulation of the rewriting of possibly cyclic term graphs, and the proof that this presentation is equivalent to the wellaccepted operational definition proposed in [3]  but for the case of circular redexes, for which we propose (and justify formally) a different treatm ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We present a categorical formulation of the rewriting of possibly cyclic term graphs, and the proof that this presentation is equivalent to the wellaccepted operational definition proposed in [3]  but for the case of circular redexes, for which we propose (and justify formally) a different treatment. The categorical framework, based on suitable 2categories, allows to model also automatic garbage collection and rules for sharing/unsharing and folding/unfolding of structures. Furthermore, it can be used for defining various extensions of term graph rewriting, and for relating it to other rewriting formalisms.
Design Verification for Control Engineering
, 2004
"... We introduce control engineering as a new domain of application for formal methods. We discuss design verification, drawing attention to the role played by diagrammatic evaluation criteria involving numeric plots of a design, such as Nichols and Bode plots. We show that symbolic computation and ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We introduce control engineering as a new domain of application for formal methods. We discuss design verification, drawing attention to the role played by diagrammatic evaluation criteria involving numeric plots of a design, such as Nichols and Bode plots. We show that symbolic computation and computational logic can be used to discharge these criteria and provide symbolic, automated, and very general alternatives to these standard numeric tests. We illustrate our work with reference to a standard reference model drawn from military avionics.
On graph(ic) encodings
 Graph Transformations and Process Algebras for Modeling Distributed and Mobile Systems, number 04241 in Dagstuhl Seminar Proceedings. Internationales Begegnungs und Forschungszentrum (IBFI), Schloss Dagstuhl
, 2005
"... Abstract. This paper is an informal summary of different encoding techniques from process calculi and distributed formalisms to graphic frameworks. The survey includes the use of solo diagrams, term graphs, synchronized hyperedge replacement systems, bigraphs, tile models and interactive systems, al ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. This paper is an informal summary of different encoding techniques from process calculi and distributed formalisms to graphic frameworks. The survey includes the use of solo diagrams, term graphs, synchronized hyperedge replacement systems, bigraphs, tile models and interactive systems, all presented at the Dagstuhl Seminar 04241. The common theme of all techniques recalled here is having a graphic presentation that, at the same time, gives both an intuitive visual rendering (of processes, states, etc.) and a rigorous mathematical framework. 1