Results 1 
3 of
3
Quickselect and Dickman function
 Combinatorics, Probability and Computing
, 2000
"... We show that the limiting distribution of the number of comparisons used by Hoare's quickselect algorithm when given a random permutation of n elements for finding the mth smallest element, where m = o(n), is the Dickman function. The limiting distribution of the number of exchanges is also derived ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
We show that the limiting distribution of the number of comparisons used by Hoare's quickselect algorithm when given a random permutation of n elements for finding the mth smallest element, where m = o(n), is the Dickman function. The limiting distribution of the number of exchanges is also derived. 1 Quickselect Quickselect is one of the simplest and e#cient algorithms in practice for finding specified order statistics in a given sequence. It was invented by Hoare [19] and uses the usual partitioning procedure of quicksort: choose first a partitioning key, say x; regroup the given sequence into two parts corresponding to elements whose values are less than and larger than x, respectively; then decide, according to the size of the smaller subgroup, which part to continue recursively or to stop if x is the desired order statistics; see Figure 1 for an illustration in terms of binary search trees. For more details, see Guibas [15] and Mahmoud [26]. This algorithm , although ine#cient in the worst case, has linear mean when given a sequence of n independent and identically distributed continuous random variables, or equivalently, when given a random permutation of n elements, where, here and throughout this paper, all n! permutations are equally likely. Let C n,m denote the number of comparisons used by quickselect for finding the mth smallest element in a random permutation, where the first partitioning stage uses n 1 comparisons. Knuth [23] was the first to show, by some di#erencing argument, that E(C n,m ) = 2 (n + 3 + (n + 1)H n (m + 2)Hm (n + 3 m)H n+1m ) , n, where Hm = 1#k#m k 1 . A more transparent asymptotic approximation is E(C n,m ) (#), (#) := 2 #), # Part of the work of this author was done while he was visiting School of C...
A theory of hyperfinite processes: the complete removal of individual uncertainty via exact LLN
, 1998
"... The aim of this paper is to provide a viable measuretheoretic framework for the study of random phenomena involving a large number of economic entities. The work is based on the fact that processes which are measurable with respect to hyperfinite Loeb product spaces capture the limiting behaviors ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
The aim of this paper is to provide a viable measuretheoretic framework for the study of random phenomena involving a large number of economic entities. The work is based on the fact that processes which are measurable with respect to hyperfinite Loeb product spaces capture the limiting behaviors of triangular arrays of random variables and thus constitute the `right' class for general stochastic modeling. The primary concern of the paper is to characterize those hyperfinite processes satisfying the exact law of large numbers by using the basic notions of conditional expectation, orthogonality, uncorrelatedness and independence together with some unifying multiplicative properties of random variables. The general structure of the processes is also analyzed via a biorthogonal expansion of the KarhunenLoeve type and via the representation in terms of the simpler hyperfinite Loeb counting spaces. A universality property for atomless Loeb product spaces is formulated to show the abun...
Noncooperative games on hyperfinite Loeb spaces
, 1999
"... We present a particular class of measure spaces, hyperfinite Loeb spaces, as a model of situations where individual players are strategically negligible, as in large nonanonymous games, or where information is diffused, as in games with imperfect information. We present results on the existence of ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
We present a particular class of measure spaces, hyperfinite Loeb spaces, as a model of situations where individual players are strategically negligible, as in large nonanonymous games, or where information is diffused, as in games with imperfect information. We present results on the existence of Nash equilibria in both kinds of games. Our results cover the case when the action sets are taken to be the unit interval, results now known to be false when they are based on more familiar measure spaces such as the Lebesgue unit interval. We also emphasize three criteria for the modelling of such gametheoretic situations asymptotic implementability, homogeneity and measurabilityand argue for games on hyperfinite Loeb spaces on the basis of these criteria. In particular, we show through explicit examples that a sequence of finite games with an increasing number of players or sample points cannot always be represented by a limit game on a Lebesgue space, and even when it can be so rep...