Results 1  10
of
161
PseudoRandom Generation from OneWay Functions
 PROC. 20TH STOC
, 1988
"... Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom gene ..."
Abstract

Cited by 725 (21 self)
 Add to MetaCart
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom generator iff there is a oneway function.
Publickey cryptosystems based on composite degree residuosity classes
 IN ADVANCES IN CRYPTOLOGY — EUROCRYPT 1999
, 1999
"... Abstract. This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to publickey cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes: a trapdoor permutation and two homomorphic pr ..."
Abstract

Cited by 614 (6 self)
 Add to MetaCart
Abstract. This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to publickey cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes: a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA. Our cryptosystems, based on usual modular arithmetics, are provably secure under appropriate assumptions in the standard model. 1
A Fuzzy Commitment Scheme
 ACM CCS'99
, 1999
"... We combine wellknown techniques from the areas of errorcorrecting codes and cryptography to achieve a new type of cryptographic primitive that we refer to as a fuzzy commitment scheme. Like a conventional cryptographic commitment scheme, our fuzzy commitment scheme is both concealing and binding: i ..."
Abstract

Cited by 204 (1 self)
 Add to MetaCart
We combine wellknown techniques from the areas of errorcorrecting codes and cryptography to achieve a new type of cryptographic primitive that we refer to as a fuzzy commitment scheme. Like a conventional cryptographic commitment scheme, our fuzzy commitment scheme is both concealing and binding: it is infeasible for an attacker to learn the committed value, and also for the committer to decommit a value in more than one way. In a conventional scheme, a commitment must be opened using a unique witness, which acts, essentially, as a decryption key. By contrast, our scheme is fuzzy in the sense that it accepts a witness that is close to the original encrypting witness in a suitable metric, but not necessarily identical. This characteristic of our fuzzy commitment scheme makes it useful for applications such as biometric authentication systems, in which data is subject to random noise. Because the scheme is tolerant of error, it is capable of protecting biometric data just as conventional cryptographic techniques, like hash functions, are used to protect alphanumeric passwords. This addresses a major outstanding problem in the theory of biometric authentication. We prove the security characteristics of our fuzzy commitment scheme relative to the properties of an underlying cryptographic hash function.
A fuzzy vault scheme
 In International Symposium on Information Theory (ISIT
, 2002
"... Abstract. We describe a simple and novel cryptographic construction that we refer to as a fuzzy vault. A player Alice may place a secret value κ in a fuzzy vault and “lock ” it using a set A of elements from some public universe U. If Bob tries to “unlock ” the vault using a set B of similar length, ..."
Abstract

Cited by 183 (1 self)
 Add to MetaCart
Abstract. We describe a simple and novel cryptographic construction that we refer to as a fuzzy vault. A player Alice may place a secret value κ in a fuzzy vault and “lock ” it using a set A of elements from some public universe U. If Bob tries to “unlock ” the vault using a set B of similar length, he obtains κ only if B is close to A, i.e., only if A and B overlap substantially. In constrast to previous constructions of this flavor, ours possesses the useful feature of order invariance, meaning that the ordering of A and B is immaterial to the functioning of the vault. As we show, our scheme enjoys provable security against a computationally unbounded attacker.
PublicKey Cryptosystems from Lattice Reduction Problems
, 1996
"... We present a new proposal for a trapdoor oneway function, from whichwe derive publickey encryption and digital signatures. The security of the new construction is based on the conjectured computational difficulty of latticereduction problems, providing a possible alternative to existing publicke ..."
Abstract

Cited by 120 (5 self)
 Add to MetaCart
We present a new proposal for a trapdoor oneway function, from whichwe derive publickey encryption and digital signatures. The security of the new construction is based on the conjectured computational difficulty of latticereduction problems, providing a possible alternative to existing publickey encryption algorithms and digital signatures such as RSA and DSS.
Secure human identification protocols
 In Asiacrypt
, 2001
"... Abstract. One interesting and important challenge for the cryptologic community is that of providing secure authentication and identification for unassisted humans. There are a range of protocols for secure identification which require various forms of trusted hardware or software, aimed at protecti ..."
Abstract

Cited by 87 (0 self)
 Add to MetaCart
Abstract. One interesting and important challenge for the cryptologic community is that of providing secure authentication and identification for unassisted humans. There are a range of protocols for secure identification which require various forms of trusted hardware or software, aimed at protecting privacy and financial assets. But how do we verify our identity, securely, when we don’t have or don’t trust our smart card, palmtop, or laptop? In this paper, we provide definitions of what we believe to be reasonable goals for secure human identification. We demonstrate that existing solutions do not meet these reasonable definitions. Finally, we provide solutions which demonstrate the feasibility of the security conditions attached to our definitions, but which are impractical for use by humans. 1
A new algorithm for finding minimumweight words in a linear code: application to primitive narrowsense BCH codes of length 511
, 1998
"... : An algorithm for finding smallweight words in large linear codes is developed. It is in particular able to decode random [512,256,57]linear codes in 9 hours on a DEC alpha computer. We determine with it the minimum distance of some binary BCH codes of length 511, which were not known. Keywords ..."
Abstract

Cited by 85 (2 self)
 Add to MetaCart
: An algorithm for finding smallweight words in large linear codes is developed. It is in particular able to decode random [512,256,57]linear codes in 9 hours on a DEC alpha computer. We determine with it the minimum distance of some binary BCH codes of length 511, which were not known. Keywords: errorcorrecting codes, decoding algorithm, minimum weight, random linear codes, BCH codes. (R'esum'e : tsvp) submitted to IEEE Transactions on Information Theory Also with ' Ecole Nationale Sup'erieure de Techniques Avanc'ees, laboratoire LEI, 32 boulevard Victor, F75015 Paris. Laboratoire d'Informatique de l'Ecole Normale Sup'erieure, 45 rue d'Ulm, 75230 Paris Cedex 05 Unite de recherche INRIA Rocquencourt Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France) Telephone : (33 1) 39 63 55 11  Telecopie : (33 1) 39 63 53 Un nouvel algorithme pour trouver des mots de poids minimum dans un code lin'eaire : application aux codes BCH primitifs au sens strict de l...
REACT: Rapid Enhancedsecurity Asymmetric Cryptosystem Transform
 CTRSA 2001, volume 2020 of LNCS
, 2001
"... Abstract. Seven years after the optimal asymmetric encryption padding (OAEP) which makes chosenciphertext secure encryption scheme from any trapdoor oneway permutation (but whose unique application is RSA), this paper presents REACT, a new conversion which applies to any weakly secure cryptosystem ..."
Abstract

Cited by 76 (21 self)
 Add to MetaCart
Abstract. Seven years after the optimal asymmetric encryption padding (OAEP) which makes chosenciphertext secure encryption scheme from any trapdoor oneway permutation (but whose unique application is RSA), this paper presents REACT, a new conversion which applies to any weakly secure cryptosystem, in the random oracle model: it is optimal from both the computational and the security points of view. Indeed, the overload is negligible, since it just consists of two more hashings for both encryption and decryption, and the reduction is very tight. Furthermore, advantages of REACT beyond OAEP are numerous: 1. it is more general since it applies to any partially trapdoor oneway function (a.k.a. weakly secure publickey encryption scheme) and therefore provides security relative to RSA but also to the DiffieHellman problem or the factorization; 2. it is possible to integrate symmetric encryption (block and stream ciphers) to reach very high speed rates; 3. it provides a key distribution with session key encryption, whose overall scheme achieves chosenciphertext security even with weakly secure symmetric scheme. Therefore, REACT could become a new alternative to OAEP, and even reach security relative to factorization, while allowing symmetric integration.
The Two Faces of Lattices in Cryptology
, 2001
"... Lattices are regular arrangements of points in ndimensional space, whose study appeared in the 19th century in both number theory and crystallography. Since the appearance of the celebrated LenstraLenstra Lov'asz lattice basis reduction algorithm twenty years ago, lattices have had surprising ..."
Abstract

Cited by 69 (16 self)
 Add to MetaCart
Lattices are regular arrangements of points in ndimensional space, whose study appeared in the 19th century in both number theory and crystallography. Since the appearance of the celebrated LenstraLenstra Lov'asz lattice basis reduction algorithm twenty years ago, lattices have had surprising applications in cryptology. Until recently, the applications of lattices to cryptology were only negative, as lattices were used to break various cryptographic schemes. Paradoxically, several positive cryptographic applications of lattices have emerged in the past five years: there now exist publickey cryptosystems based on the hardness of lattice problems, and lattices play a crucial role in a few security proofs.
How to achieve a McEliecebased digital signature scheme
, 2001
"... Abstract. McEliece is one of the oldest known public key cryptosystems. Though it was less widely studied than RSA, it is remarkable that all known attacks are still exponential. It is widely believed that codebased cryptosystems like McEliece do not allow practical digital signatures. In the prese ..."
Abstract

Cited by 61 (7 self)
 Add to MetaCart
Abstract. McEliece is one of the oldest known public key cryptosystems. Though it was less widely studied than RSA, it is remarkable that all known attacks are still exponential. It is widely believed that codebased cryptosystems like McEliece do not allow practical digital signatures. In the present paper we disprove this belief and show a way to build a practical signature scheme based on coding theory. Its security can be reduced in the random oracle model to the wellknown syndrome decoding problem and the distinguishability of permuted binary Goppa codes from a random code. For example we propose a scheme with signatures of 81bits and a binary security workfactor of 2 83.