Results 1 
2 of
2
Algorithms in algebraic number theory
 Bull. Amer. Math. Soc
, 1992
"... Abstract. In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to ..."
Abstract

Cited by 40 (3 self)
 Add to MetaCart
Abstract. In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers. 1.
Approximating Rings of Integers in Number Fields
, 1994
"... In this paper we study the algorithmic problem of finding the ring of integers of a given algebraic number field. In practice, this problem is often considered to be wellsolved, but theoretical results indicate that it is intractable for number fields that are defined by equations with very large ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
In this paper we study the algorithmic problem of finding the ring of integers of a given algebraic number field. In practice, this problem is often considered to be wellsolved, but theoretical results indicate that it is intractable for number fields that are defined by equations with very large coefficients. Such fields occur in the number field sieve algorithm for factoring integers. Applying a variant of a standard algorithm for finding rings of integers, one finds a subring of the number field that one may view as the "best guess" one has for the ring of integers. This best guess is probably often correct. Our main concern is what can be proved about this subring. We show that it has a particularly transparent local structure, which is reminiscent of the structure of tamely ramified extensions of local fields. A major portion of the paper is devoted to the study of rings that are "tame" in our more general sense. As a byproduct, we prove complexity results that elaborate upon a ...