Results 1  10
of
194
Compressed sensing
 IEEE Trans. Inform. Theory
"... Abstract—Suppose is an unknown vector in (a digital image or signal); we plan to measure general linear functionals of and then reconstruct. If is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measureme ..."
Abstract

Cited by 1730 (18 self)
 Add to MetaCart
Abstract—Suppose is an unknown vector in (a digital image or signal); we plan to measure general linear functionals of and then reconstruct. If is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements can be dramatically smaller than the size. Thus, certain natural classes of images with pixels need only = ( 1 4 log 5 2 ()) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual pixel samples. More specifically, suppose has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)—so the coefficients belong to an ball for 0 1. The most important coefficients in that expansion allow reconstruction with 2 error ( 1 2 1
Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information
, 2006
"... This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discretetime signal and a randomly chosen set of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier coefficients on the set? A typical result of this pa ..."
Abstract

Cited by 1304 (42 self)
 Add to MetaCart
This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discretetime signal and a randomly chosen set of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier coefficients on the set? A typical result of this paper is as follows. Suppose that is a superposition of spikes @ Aa @ A @ A obeying @�� � A I for some constant H. We do not know the locations of the spikes nor their amplitudes. Then with probability at least I @ A, can be reconstructed exactly as the solution to the I minimization problem I aH @ A s.t. ” @ Aa ” @ A for all
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 832 (16 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 662 (15 self)
 Add to MetaCart
This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to recover f exactly from the data y? We prove that under suitable conditions on the coding matrix A, the input f is the unique solution to the ℓ1minimization problem (‖x‖ℓ1:= i xi) min g∈R n ‖y − Ag‖ℓ1 provided that the support of the vector of errors is not too large, ‖e‖ℓ0: = {i: ei ̸= 0}  ≤ ρ · m for some ρ> 0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted. This work is related to the problem of finding sparse solutions to vastly underdetermined systems of linear equations. There are also significant connections with the problem of recovering signals from highly incomplete measurements. In fact, the results introduced in this paper improve on our earlier work [5]. Finally, underlying the success of ℓ1 is a crucial property we call the uniform uncertainty principle that we shall describe in detail.
Greed is Good: Algorithmic Results for Sparse Approximation
, 2004
"... This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representa ..."
Abstract

Cited by 534 (9 self)
 Add to MetaCart
This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representation of an exactly sparse signal. It leverages this theory to show that both OMP and BP succeed for every sparse input signal from a wide class of dictionaries. These quasiincoherent dictionaries offer a natural generalization of incoherent dictionaries, and the cumulative coherence function is introduced to quantify the level of incoherence. This analysis unifies all the recent results on BP and extends them to OMP. Furthermore, the paper develops a sufficient condition under which OMP can identify atoms from an optimal approximation of a nonsparse signal. From there, it argues that OMP is an approximation algorithm for the sparse problem over a quasiincoherent dictionary. That is, for every input signal, OMP calculates a sparse approximant whose error is only a small factor worse than the minimal error that can be attained with the same number of terms.
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that fo ..."
Abstract

Cited by 342 (9 self)
 Add to MetaCart
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues of random Wishart matrices.
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 298 (1 self)
 Add to MetaCart
This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that has been contaminated with additive noise, the goal is to identify which elementary signals participated and to approximate their coefficients. Although many algorithms have been proposed, there is little theory which guarantees that these algorithms can accurately and efficiently solve the problem. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure that convex relaxation succeeds. As evidence of the broad impact of these results, the paper describes how convex relaxation can be used for several concrete signal recovery problems. It also describes applications to channel coding, linear regression, and numerical analysis.
Stable recovery of sparse overcomplete representations in the presence of noise
 IEEE TRANS. INFORM. THEORY
, 2006
"... Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes t ..."
Abstract

Cited by 291 (20 self)
 Add to MetaCart
Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes the possibility of stable recovery under a combination of sufficient sparsity and favorable structure of the overcomplete system. Considering an ideal underlying signal that has a sufficiently sparse representation, it is assumed that only a noisy version of it can be observed. Assuming further that the overcomplete system is incoherent, it is shown that the optimally sparse approximation to the noisy data differs from the optimally sparse decomposition of the ideal noiseless signal by at most a constant multiple of the noise level. As this optimalsparsity method requires heavy (combinatorial) computational effort, approximation algorithms are considered. It is shown that similar stability is also available using the basis and the matching pursuit algorithms. Furthermore, it is shown that these methods result in sparse approximation of the noisy data that contains only terms also appearing in the unique sparsest representation of the ideal noiseless sparse signal.
Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
, 2006
"... Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our pr ..."
Abstract

Cited by 172 (20 self)
 Add to MetaCart
Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our proposal, Stagewise Orthogonal Matching Pursuit (StOMP), successively transforms the signal into a negligible residual. Starting with initial residual r0 = y, at the sth stage it forms the ‘matched filter ’ Φ T rs−1, identifies all coordinates with amplitudes exceeding a speciallychosen threshold, solves a leastsquares problem using the selected coordinates, and subtracts the leastsquares fit, producing a new residual. After a fixed number of stages (e.g. 10), it stops. In contrast to Orthogonal Matching Pursuit (OMP), many coefficients can enter the model at each stage in StOMP while only one enters per stage in OMP; and StOMP takes a fixed number of stages (e.g. 10), while OMP can take many (e.g. n). StOMP runs much faster than competing proposals for sparse solutions, such as ℓ1 minimization and OMP, and so is attractive for solving largescale problems. We use phase diagrams to compare algorithm performance. The problem of recovering a ksparse vector x0 from (y, Φ) where Φ is random n × N and y = Φx0 is represented by a point (n/N, k/n)
On sparse representations in arbitrary redundant bases
 IEEE Trans. Inf. Th
, 2004
"... Abstract—The purpose of this contribution is to generalize some recent results on sparse representations of signals in redundant bases. The question that is considered is the following: given a matrix of dimension ( ) with and a vector = , find a sufficient condition for to have a unique sparsest re ..."
Abstract

Cited by 158 (0 self)
 Add to MetaCart
Abstract—The purpose of this contribution is to generalize some recent results on sparse representations of signals in redundant bases. The question that is considered is the following: given a matrix of dimension ( ) with and a vector = , find a sufficient condition for to have a unique sparsest representation as a linear combination of columns of. Answers to this question are known when is the concatenation of two unitary matrices and either an extensive combinatorial search is performed or a linear program is solved. We consider arbitrary matrices and give a sufficient condition for the unique sparsest solution to be the unique solution to both a linear program or a parametrized quadratic program. The proof is elementary and the possibility of using a quadratic program opens perspectives to the case where = + with a vector of noise or modeling errors. Index Terms—Basis pursuit, global matched filter, linear program, quadratic program, redundant dictionaries, sparse representations. I.