Results 1 
2 of
2
Combinatorial algorithms for DNA sequence assembly
 Algorithmica
, 1993
"... The trend towards very large DNA sequencing projects, such as those being undertaken as part of the human genome initiative, necessitates the development of efficient and precise algorithms for assembling a long DNA sequence from the fragments obtained by shotgun sequencing or other methods. The seq ..."
Abstract

Cited by 42 (3 self)
 Add to MetaCart
The trend towards very large DNA sequencing projects, such as those being undertaken as part of the human genome initiative, necessitates the development of efficient and precise algorithms for assembling a long DNA sequence from the fragments obtained by shotgun sequencing or other methods. The sequence reconstruction problem that we take as our formulation of DNA sequence assembly is a variation of the shortest common superstring problem, complicated by the presence of sequencing errors and reverse complements of fragments. Since the simpler superstring problem is NPhard, any efficient reconstruction procedure must resort to heuristics. In this paper, however, a four phase approach based on rigorous design criteria is presented, and has been found to be very accurate in practice. Our method is robust in the sense that it can accommodate high sequencing error rates and list a series of alternate solutions in the event that several appear equally good. Moreover it uses a limited form ...
Approximation Algorithms For The Shortest
 Information and Computation
, 1989
"... The object of the shortest common superstring problem (SCS) is to find the shortest possible string that contains every string in a given set as substrings. As the problem is NPcomplete, approximation algorithms are of interest. The value of an approximate solution to SCS is normally taken to be it ..."
Abstract
 Add to MetaCart
The object of the shortest common superstring problem (SCS) is to find the shortest possible string that contains every string in a given set as substrings. As the problem is NPcomplete, approximation algorithms are of interest. The value of an approximate solution to SCS is normally taken to be its length, and we seek algorithms that make the length as small as possible. A different measure is given by the sum of the overlaps between consecutive strings in a candidate solution. When considering this measure, the object is to find solutions that make it as large as possible. These two measures offer different ways of viewing the problem. While the two viewpoints are equivalent with respect to optimal solutions, they differ with respect to approximate solutions. We describe several approximation algorithms that produce solutions that are always within a factor of two of optimum with respect to the overlap measure. We also describe an efficient implementation of one of these, using McCreight's compact suffix tree construction algorithm. The worstcase running time is O(m log n) for small alphabets, where m is the sum of the lengths of all the strings in the set and n is the number of strings. For large alphabets, the algorithm can be implemented in O(m log m) time by using Sleator and Tarjan's lexicographic splay tree data structure.