Results 11  20
of
65
Rewriting Extended Regular Expressions
, 1993
"... We concider an extened algebra of regular events (languages) with intersection besides the usual operations. This algebra has the structure of a distributive lattice with monotonic operations; the latter property is crucial for some applications. We give a new complete Horn equational axiomatiztion ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
We concider an extened algebra of regular events (languages) with intersection besides the usual operations. This algebra has the structure of a distributive lattice with monotonic operations; the latter property is crucial for some applications. We give a new complete Horn equational axiomatiztion of the algebra and develop some termrewriting techniques for constructing logical inferences of valid equations. A shorter version of this paper is to appear in the proceedings of Developments in Language Theory, Univ. of Turku, July 1993, published by World Scientific. The present version has been submitted for publication elsewhere. 1 Introduction In this paper we consider an extended algebra of regular events (languages) on a given alphabet with intersection besides the usual operations (union, concatenation, Kleene star, empty, and the regular unit). This algebra has the structure of a distributive lattice (join is union, meet is intersection) with only monotonic operations. The latte...
Equational axioms for probabilistic bisimilarity
 IN PROCEEDINGS OF 9TH AMAST, LECTURE NOTES IN COMPUTER SCIENCE
, 2002
"... This paper gives an equational axiomatization of probabilistic bisimulation equivalence for a class of finitestate agents previously studied by Stark and Smolka ((2000) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 571595). The axiomatization is obtained by extending ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
This paper gives an equational axiomatization of probabilistic bisimulation equivalence for a class of finitestate agents previously studied by Stark and Smolka ((2000) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 571595). The axiomatization is obtained by extending the general axioms of iteration theories (or iteration algebras), which characterize the equational properties of the fixed point operator on (#)continuous or monotonic functions, with three axiom schemas that express laws that are specific to probabilistic bisimilarity.
Bisimulation is not Finitely (First Order) Equationally Axiomatisable
 in Proceedings 9 th Annual Symposium on Logic in Computer Science
, 1994
"... This paper considers the existence of finite equational axiomatisations of bisimulation over a calculus of finite state processes. To express even simple properties such as ¯XE = ¯XE[E=X] equationally it is necessary to use some notation for substitutions. Accordingly the calculus is embedded in a s ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
This paper considers the existence of finite equational axiomatisations of bisimulation over a calculus of finite state processes. To express even simple properties such as ¯XE = ¯XE[E=X] equationally it is necessary to use some notation for substitutions. Accordingly the calculus is embedded in a simply typed lambda calculus, allowing axioms such as the above to be written as equations of higher type rather than as equation schemes. Notions of higher order transition system and bisimulation are then defined and using them the nonexistence of finite axiomatisations containing at most first order variables is shown. The same technique is then applied to calculi of star expressions containing a zero process  in contrast to the positive result given in [FZ93] for BPA ? , which differs only in that it does not contain a zero. 1 Introduction In this paper we consider the existence of finite equational axiomatisations for bisimulation over finite state processes. Such questions of axio...
Dynamic Algebras: Examples, Constructions, Applications
 Studia Logica
, 1991
"... Dynamic algebras combine the classes of Boolean (B 0 0) and regular (R [ ; ) algebras into a single finitely axiomatized variety (B R 3) resembling an Rmodule with "scalar" multiplication 3. The basic result is that is reflexive transitive closure, contrary to the intuition that this con ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
Dynamic algebras combine the classes of Boolean (B 0 0) and regular (R [ ; ) algebras into a single finitely axiomatized variety (B R 3) resembling an Rmodule with "scalar" multiplication 3. The basic result is that is reflexive transitive closure, contrary to the intuition that this concept should require quantifiers for its definition. Using this result we give several examples of dynamic algebras arising naturally in connection with additive functions, binary relations, state trajectories, languages, and flowcharts. The main result is that free dynamic algebras are residually finite (i.e. factor as a subdirect product of finite dynamic algebras), important because finite separable dynamic algebras are isomorphic to Kripke structures. Applications include a new completeness proof for the Segerberg axiomatization of propositional dynamic logic, and yet another notion of regular algebra. Key words: Dynamic algebra, logic, program verification, regular algebra. This paper or...
NonDeterministic Kleene Coalgebras
"... In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Miln ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Milner (on regular behaviours and finite labelled transition systems), and includes many other systems such as Mealy and Moore machines.
Simplifying XML Schema: Effortless Handling of Nondeterministic Regular Expressions
, 2009
"... Whether beloved or despised, XML Schema is momentarily the only industrially accepted schema language for XML and is unlikely to become obsolete any time soon. Nevertheless, many nontransparent restrictions unnecessarily complicate the design of XSDs. For instance, complex content models in XML Sche ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
Whether beloved or despised, XML Schema is momentarily the only industrially accepted schema language for XML and is unlikely to become obsolete any time soon. Nevertheless, many nontransparent restrictions unnecessarily complicate the design of XSDs. For instance, complex content models in XML Schema are constrained by the infamous unique particle attribution (UPA) constraint. In formal language theoretic terms, this constraint restricts content models to deterministic regular expressions. As the latter constitute a semantic notion and no simple corresponding syntactical characterization is known, it is very difficult for nonexpert users to understand exactly when and why content models do or do not violate UPA. In the present paper, we therefore investigate solutions to relieve users from the burden of UPA by automatically transforming nondeterministic expressions into concise deterministic ones defining the same language or constituting good approximations. The presented techniques facilitate XSD construction by reducing the design task at hand more towards the complexity of the modeling task. In addition, our algorithms can serve as a plugin for
Process Algebra with Recursive Operations
"... ing from just the two atomic actions in I def = fthrow; tailg, FIR b 1 yields I ((throw tail) throw head) = head: First, observe I (throw tail) = . Then, using (4), it easily follows that I ((throw tail) throw head) = head: This expresses that head eventually comes up, and thus ex ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
ing from just the two atomic actions in I def = fthrow; tailg, FIR b 1 yields I ((throw tail) throw head) = head: First, observe I (throw tail) = . Then, using (4), it easily follows that I ((throw tail) throw head) = head: This expresses that head eventually comes up, and thus excludes the infinite sequence of steps present in I ((throw tail) throw head). 7.2 Empty Process Let the symbol " denote the empty process, introduced as a unit for sequential composition by Koymans and Vrancken in [58] (see also [28, 74]). Obvious as " may be (being a unit for \Delta), its introduction is nontrivial because at the same time it must be a unit for k as well. In the design of BPA, PA, ACP and related axiom systems, it has proved useful to study versions of the theory, both with and without ". Just for this reason the star operation with its (original) defining equation as given by Kleene in [54] was introduced in process algebra. Taking y = " in x y, one obtains x ...
Optimal Lower bounds on Regular Expression Size using Communication Complexity
 In: Proceedings of FoSSaCS: 273–286, LNCS 4962
, 2008
"... Abstract. The problem of converting deterministic finite automata into (short) regular expressions is considered. It is known that the required expression size is 2 Θ(n) in the worst case for infinite languages, and for finite languages it is n Ω(log log n) and n O(log n) , if the alphabet size grow ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
Abstract. The problem of converting deterministic finite automata into (short) regular expressions is considered. It is known that the required expression size is 2 Θ(n) in the worst case for infinite languages, and for finite languages it is n Ω(log log n) and n O(log n) , if the alphabet size grows with the number of states n of the given automaton. A new lower bound method based on communication complexity for regular expression size is developed to show that the required size is indeed n Θ(log n). For constant alphabet size the best lower bound known to date is Ω(n 2), even when allowing infinite languages and nondeterministic finite automata. As the technique developed here works equally well for deterministic finite automata over binary alphabets, the lower bound is improved to n Ω(log n). 1
On Action Algebras
 Logic and Information Flow
, 1993
"... Action algebras have been proposed by Pratt [22] as an alternative to Kleene algebras [8, 9]. Their chief advantage over Kleene algebras is that they form a finitelybased equational variety, so the essential properties of (iteration) are captured purely equationally. However, unlike Kleene algeb ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
Action algebras have been proposed by Pratt [22] as an alternative to Kleene algebras [8, 9]. Their chief advantage over Kleene algebras is that they form a finitelybased equational variety, so the essential properties of (iteration) are captured purely equationally. However, unlike Kleene algebras, they are not closed under the formation of matrices, which renders them inapplicable in certain constructions in automata theory and the design and analysis of algorithms. In this paper we consider a class of action algebras called action lattices. An action lattice is simply an action algebra that forms a lattice under its natural order. Action lattices combine the best features of Kleene algebras and action algebras: like action algebras, they form a finitelybased equational variety; like Kleene algebras, they are closed under the formation of matrices. Moreover, they form the largest subvariety of action algebras for which this is true. All common examples of Kleene algebras appeari...
On the Complexity of Reasoning in Kleene Algebra
 Information and Computation
, 1997
"... We study the complexity of reasoning in Kleene algebra and *continuous Kleene algebra in the presence of extra equational assumptions E; that is, the complexity of deciding the validity of universal Horn formulas E ! s = t, where E is a finite set of equations. We obtain various levels of complexi ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
We study the complexity of reasoning in Kleene algebra and *continuous Kleene algebra in the presence of extra equational assumptions E; that is, the complexity of deciding the validity of universal Horn formulas E ! s = t, where E is a finite set of equations. We obtain various levels of complexity based on the form of the assumptions E. Our main results are: for * continuous Kleene algebra, ffl if E contains only commutativity assumptions pq = qp, the problem is \Pi 0 1 complete; ffl if E contains only monoid equations, the problem is \Pi 0 2 complete; ffl for arbitrary equations E, the problem is \Pi 1 1  complete. The last problem is the universal Horn theory of the *continuous Kleene algebras. This resolves an open question of Kozen (1994). 1 Introduction Kleene algebra (KA) is fundamental and ubiquitous in computer science. Since its invention by Kleene in 1956, it has arisen in various forms in program logic and semantics [17, 28], relational algebra [27, 32], aut...