Results 1  10
of
95
Causal Diagrams For Empirical Research
"... The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if ..."
Abstract

Cited by 247 (37 self)
 Add to MetaCart
The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifying causal effects from nonexperimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in terms of observed distributions; otherwise, the diagrams can be queried to suggest additional observations or auxiliary experiments from which the desired inferences can be obtained. Key words: Causal inference, graph models, interventions treatment effect 1 Introduction The tools introduced in this paper are aimed at helping researchers communicate qualitative assumptions about causeeffect relationships, elucidate the ramifications of such assumptions, and derive causal inferences from a combination...
Direct and Indirect Effects
, 2005
"... The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This pape ..."
Abstract

Cited by 139 (24 self)
 Add to MetaCart
The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This paper presents a new way of defining the effect transmitted through a restricted set of paths, without controlling variables on the remaining paths. This permits the assessment of a more natural type of direct and indirect effects, one that is applicable in both linear and nonlinear models and that has broader policyrelated interpretations. The paper establishes conditions under which such assessments can be estimated consistently from experimental and nonexperimental data, and thus extends pathanalytic techniques to nonlinear and nonparametric models.
Causal inference in statistics: An Overview
, 2009
"... This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all ca ..."
Abstract

Cited by 68 (11 self)
 Add to MetaCart
(Show Context)
This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called “causal effects ” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret, ” “attribution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potentialoutcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
Graphs, Causality, And Structural Equation Models
, 1998
"... Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers. ..."
Abstract

Cited by 64 (14 self)
 Add to MetaCart
Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers.
Axioms of Causal Relevance
 Artificial Intelligence
, 1996
"... This paper develops axioms and formal semantics for statements of the form "X is causally irrelevant to Y in context Z," which we interpret to mean "Changing X will not affect Y if we hold Z constant." The axiomization of causal irrelevance is contrasted with the axiomization ..."
Abstract

Cited by 54 (13 self)
 Add to MetaCart
This paper develops axioms and formal semantics for statements of the form "X is causally irrelevant to Y in context Z," which we interpret to mean "Changing X will not affect Y if we hold Z constant." The axiomization of causal irrelevance is contrasted with the axiomization of informational irrelevance, as in "Learning X will not alter our belief in Y , once we know Z." Two versions of causal irrelevance are analyzed, probabilistic and deterministic. We show that, unless stability is assumed, the probabilistic definition yields a very loose structure, that is governed by just two trivial axioms. Under the stability assumption, probabilistic causal irrelevance is isomorphic to path interception in cyclic graphs. Under the deterministic definition, causal irrelevance complies with all of the axioms of path interception in cyclic graphs, with the exception of transitivity. We compare our formalism to that of [Lewis, 1973], and offer a graphical method of proving theorems abou...
Causality in Bayesian Belief Networks
 In Proceedings of the Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI93
, 1993
"... We address the problem of causal interpretation of the graphical structure of Bayesian belief networks (BBNs). We review the concept of causality explicated in the domain of structural equations models and show that it is applicable to BBNs. In this view, which we call mechanismbased, causality is ..."
Abstract

Cited by 51 (19 self)
 Add to MetaCart
(Show Context)
We address the problem of causal interpretation of the graphical structure of Bayesian belief networks (BBNs). We review the concept of causality explicated in the domain of structural equations models and show that it is applicable to BBNs. In this view, which we call mechanismbased, causality is defined within models and causal asymmetries arise when mechanisms are placed in the context of a system. We lay the link between structural equations models and BBNs models and formulate the conditions under which the latter can be given causal interpretation. 1 INTRODUCTION Although references to causality permeate everyday scientific practice, the notion of causation has been one of the most controversial subjects in the philosophy of science. Hume's critique that causal connections cannot be observed, and therefore have no empirical basis, strongly influenced the empiricist framework and refocused the concept of causality to scientific models as opposed to reality. A strong attack on ca...
An Extended Class of Instrumental Variables for the Estimation of Causal Effects
 UCSD DEPT. OF ECONOMICS DISCUSSION PAPER
, 1996
"... This paper builds on the structural equations, treatment effect, and machine learning literatures to provide a causal framework that permits the identification and estimation of causal effects from observational studies. We begin by providing a causal interpretation for standard exogenous regresso ..."
Abstract

Cited by 43 (15 self)
 Add to MetaCart
This paper builds on the structural equations, treatment effect, and machine learning literatures to provide a causal framework that permits the identification and estimation of causal effects from observational studies. We begin by providing a causal interpretation for standard exogenous regressors and standard “valid” and “relevant” instrumental variables. We then build on this interpretation to characterize extended instrumental variables (EIV) methods, that is methods that make use of variables that need not be valid instruments in the standard sense, but that are nevertheless instrumental in the recovery of causal effects of interest. After examining special cases of single and double EIV methods, we provide necessary and sufficient conditions for the identification of causal effects by means of EIV and provide consistent and asymptotically normal estimators for the effects of interest.
Nonmonotonic reasoning and causation
 Cognitive Science
, 1990
"... It is suggested that taking into account considerations that traditionally fall within the scope of computer science in general. and artificial intelligence in particular, sheds new light on the subject of causation. It is orgued that adopting causal nations can be viewed as filling a computational ..."
Abstract

Cited by 41 (0 self)
 Add to MetaCart
It is suggested that taking into account considerations that traditionally fall within the scope of computer science in general. and artificial intelligence in particular, sheds new light on the subject of causation. It is orgued that adopting causal nations can be viewed as filling a computational need: They allow reasoning with incomplete information, facilitate economical representations, and afford relatively efficient methods for reasoning about those representations. Specifically, it is proposed that causal reasoning is intimately bound to nonmonotonic reasoning. An account of causation is offered that relies upon this connection, and compares this proposal to previous accounts within philosophy and artificial intelligence. 1.
Reasoning With Cause And Effect
, 1999
"... This paper summarizes basic concepts and principles that I have found to be useful in dealing with causal reasoning. The paper is written as a companion to a lecture under the same title, to be presented at IJCAI99, and is intended to supplement the lecture with technical details and pointers to mo ..."
Abstract

Cited by 40 (0 self)
 Add to MetaCart
This paper summarizes basic concepts and principles that I have found to be useful in dealing with causal reasoning. The paper is written as a companion to a lecture under the same title, to be presented at IJCAI99, and is intended to supplement the lecture with technical details and pointers to more elaborate discussions in the literature. The ruling conception will be to treat causation as a computational schema devised to identify the invariant relationships in the environment, so as to facilitate reliable prediction of the effect of actions. This conception, as well as several of its satellite principles and tools, has been guiding paradigm for several research communities in AI, most notably those connected with causal discovery, troubleshooting, planning under uncertainty and modeling the behavior of physical systems. My hopes are to encourage a broader and more effective usage of causal modeling by explicating these common principles in simple and familiar mathematical form. Af...