Results 1 
2 of
2
Prelogical Relations
, 1999
"... this paper but which have some intriguing connections to some of our results and techniques, are [32] and [20]. We believe that the concept of prelogical relation would have a beneficial impact on the presentation and understanding of their results ..."
Abstract

Cited by 26 (5 self)
 Add to MetaCart
this paper but which have some intriguing connections to some of our results and techniques, are [32] and [20]. We believe that the concept of prelogical relation would have a beneficial impact on the presentation and understanding of their results
Upper Bounds for Standardizations and an Application
 The Journal of Symbolic Logic
, 1996
"... We first present a new proof for the standardization theorem, a fundamental theorem in calculus. Since our proof is largely built upon structural induction on lambda terms, we can extract some bounds for the number of fireduction steps in the standard fireduction sequences obtained from transfor ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
We first present a new proof for the standardization theorem, a fundamental theorem in calculus. Since our proof is largely built upon structural induction on lambda terms, we can extract some bounds for the number of fireduction steps in the standard fireduction sequences obtained from transforming any given fireduction sequences. This result sharpens the standardization theorem and establishes a link between lazy and eager evaluation orders in the context of computational complexity. As an application, we establish a superexponential bound for the number of fireduction steps in fireduction sequences from any given simply typed terms. 1 Introduction The standardization theorem of Curry and Feys [CF58] is a very useful result, stating that if u reduces to v for terms u and v, then there is a standard fireduction from u to v. Using this theorem, we can readily prove the normalization theorem, i.e., a term has a normal form if and only if the leftmost fireduction sequence f...