Results 1  10
of
38
Domain Theory in Logical Form
 Annals of Pure and Applied Logic
, 1991
"... The mathematical framework of Stone duality is used to synthesize a number of hitherto separate developments in Theoretical Computer Science: • Domain Theory, the mathematical theory of computation introduced by Scott as a foundation for denotational semantics. • The theory of concurrency and system ..."
Abstract

Cited by 231 (10 self)
 Add to MetaCart
The mathematical framework of Stone duality is used to synthesize a number of hitherto separate developments in Theoretical Computer Science: • Domain Theory, the mathematical theory of computation introduced by Scott as a foundation for denotational semantics. • The theory of concurrency and systems behaviour developed by Milner, Hennessy et al. based on operational semantics. • Logics of programs. Stone duality provides a junction between semantics (spaces of points = denotations of computational processes) and logics (lattices of properties of processes). Moreover, the underlying logic is geometric, which can be computationally interpreted as the logic of observable properties—i.e. properties which can be determined to hold of a process on the basis of a finite amount of information about its execution. These ideas lead to the following programme:
Full Abstraction for PCF
 Information and Computation
, 1996
"... An intensional model for the programming language PCF is described, in which the types of PCF are interpreted by games, and the terms by certain "historyfree" strategies. This model is shown to capture definability in PCF. More precisely, every compact strategy in the model is definable in a certai ..."
Abstract

Cited by 192 (14 self)
 Add to MetaCart
An intensional model for the programming language PCF is described, in which the types of PCF are interpreted by games, and the terms by certain "historyfree" strategies. This model is shown to capture definability in PCF. More precisely, every compact strategy in the model is definable in a certain simple extension of PCF. We then introduce an intrinsic preorder on strategies, and show that it satisfies some remarkable properties, such that the intrinsic preorder on function types coincides with the pointwise preorder. We then obtain an orderextensional fully abstract model of PCF by quotienting the intensional model by the intrinsic preorder. This is the first syntaxindependent description of the fully abstract model for PCF. (Hyland and Ong have obtained very similar results by a somewhat different route, independently and at the same time.) We then consider the effective version of our model, and prove a Universality Theorem: every element of the effective extensional model is definable in PCF. Equivalently, every recursive strategy is definable up to observational equivalence.
Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions
 ALGOLLIKE LANGUAGES
, 1997
"... The manipulation of objects with state which changes over time is allpervasive in computing. Perhaps the simplest example of such objects are the program variables of classical imperative languages. An important strand of work within the study of such languages, pioneered by John Reynolds, focusses ..."
Abstract

Cited by 103 (18 self)
 Add to MetaCart
The manipulation of objects with state which changes over time is allpervasive in computing. Perhaps the simplest example of such objects are the program variables of classical imperative languages. An important strand of work within the study of such languages, pioneered by John Reynolds, focusses on "Idealized Algol", an elegant synthesis of imperative and functional features. We present a novel semantics for Idealized Algol using games, which is quite unlike traditional denotational models of state. The model takes into account the irreversibility of changes in state, and makes explicit the difference between copying and sharing of entities. As a formal measure of the accuracy of our model, we obtain a full abstraction theorem for Idealized Algol with active expressions.
Full Abstraction for PCF (Extended Abstract)
 THEORETICAL ASPECTS OF COMPUTER SOFTWARE. INTERNATIONAL SYMPOSIUM TACS'94, NUMBER 789 IN LECTURE NOTES IN COMPUTER SCIENCE
, 1994
"... The Full Abstraction Problem for PCF [23, 20, 7, 11] is one of the longeststanding problems in the semantics of programming languages. There is quite widespread agreement that it is one of the most difficult; there is much less agreement as to what exactly the problem is, or more particularly as ..."
Abstract

Cited by 66 (11 self)
 Add to MetaCart
The Full Abstraction Problem for PCF [23, 20, 7, 11] is one of the longeststanding problems in the semantics of programming languages. There is quite widespread agreement that it is one of the most difficult; there is much less agreement as to what exactly the problem is, or more particularly as to the precise criteria for a solution. The usual formulation is that one wants a "semantic characterization" of the fully abstract model (by which we mean the inequationally fully abstract orderextensional model, which Milner proved to be uniquely specified up to isomorphism by these properties [20]). The problem is to understand what should be meant by a "semantic characterization". Our view is that the essential content of the problem, what makes it important, is that it calls for a semantic characterization of sequential, functional computation at hig...
Full Abstraction for Functional Languages with Control
 In Proceedings, Twelfth Annual IEEE Symposium on Logic in Computer Science
, 1997
"... This paper considers the consequences of relaxing the bracketing condition on `dialogue games', showing that this leads to a category of games which can be `factorized' into a wellbracketed substructure, and a set of classically typed morphisms. These are shown to be sound denotations for control o ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
This paper considers the consequences of relaxing the bracketing condition on `dialogue games', showing that this leads to a category of games which can be `factorized' into a wellbracketed substructure, and a set of classically typed morphisms. These are shown to be sound denotations for control operators, allowing the factorization to be used to extend the definability result for PCF to one for PCF with control operators at atomic types. Thus we define a fully abstract and effectively presentable model of a functional language with nonlocal control as part of a modular approach to modelling nonfunctional features using games. 1.
Hypercoherences: A Strongly Stable Model of Linear Logic
 Mathematical Structures in Computer Science
, 1993
"... We present a model of classical linear logic based on the notion of strong stability that was introduced in [BE], a work about sequentiality written jointly with Antonio Bucciarelli. ..."
Abstract

Cited by 59 (8 self)
 Add to MetaCart
We present a model of classical linear logic based on the notion of strong stability that was introduced in [BE], a work about sequentiality written jointly with Antonio Bucciarelli.
Fully abstract semantics for observably sequential languages
 Information and Computation
, 1994
"... One of the major challenges in denotational semantics is the construction of a fully abstract semantics for a higherorder sequential programming language. For the past fifteen years, research on this problem has focused on developing a semantics for PCF, an idealized functional programming language ..."
Abstract

Cited by 49 (4 self)
 Add to MetaCart
One of the major challenges in denotational semantics is the construction of a fully abstract semantics for a higherorder sequential programming language. For the past fifteen years, research on this problem has focused on developing a semantics for PCF, an idealized functional programming language based on the typed λcalculus. Unlike most practical languages, PCF has no facilities for observing and exploiting the evaluation order of arguments to procedures. Since we believe that these facilities play a crucial role in sequential computation, this paper focuses on a sequential extension of PCF, called SPCF, that includes two classes of control operators: a possibly empty set of error generators and a collection of catch and throw constructs. For each set of error generators, the paper presents a fully abstract semantics for SPCF. If the set of error generators is empty, the semantics interprets all procedures—including catch and throw—as BerryCurien sequential algorithms. If the language contains error generators, procedures denote manifestly sequential functions. The manifestly sequential functions form a Scott domain that is isomorphic to a domain of decision trees, which is the natural
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 45 (19 self)
 Add to MetaCart
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
Observable Sequentiality and Full Abstraction
 In Proceedings of POPL ’92
, 1992
"... ion Robert Cartwright Matthias Felleisen Department of Computer Science Rice University Houston, TX 772511892 Abstract One of the major challenges in denotational semantics is the construction of fully abstract models for sequential programming languages. For the past fifteen years, research o ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
ion Robert Cartwright Matthias Felleisen Department of Computer Science Rice University Houston, TX 772511892 Abstract One of the major challenges in denotational semantics is the construction of fully abstract models for sequential programming languages. For the past fifteen years, research on this problem has focused on developing models for PCF, an idealized functional programming language based on the typed lambda calculus. Unlike most practical languages, PCF has no facilities for observing and exploiting the evaluation order of arguments in procedures. Since we believe that such facilities are crucial for understanding the nature of sequential computation, this paper focuses on a sequential extension of PCF (called SPCF) that includes two classes of control operators: error generators and escape handlers. These new control operators enable us to construct a fully abstract model for SPCF that interprets higher types as sets of errorsensitive functions instead of continuous...