Results 1  10
of
46
Polynomial time approximation schemes for Euclidean TSP and other geometric problems
 In Proceedings of the 37th IEEE Symposium on Foundations of Computer Science (FOCS’96
, 1996
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c � 1 and given any n nodes in � 2, a randomized version of the scheme finds a (1 � 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes a ..."
Abstract

Cited by 321 (3 self)
 Add to MetaCart
Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c � 1 and given any n nodes in � 2, a randomized version of the scheme finds a (1 � 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes are in � d, the running time increases to O(n(log n) (O(�dc))d�1). For every fixed c, d the running time is n � poly(log n), that is nearly linear in n. The algorithm can be derandomized, but this increases the running time by a factor O(n d). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best approximation algorithms for all these problems achieved a constantfactor approximation. We also give efficient approximation schemes for Euclidean MinCost Matching, a problem that can be solved exactly in polynomial time. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as �p for p � 1 or other Minkowski norms). They also have simple parallel (i.e., NC) implementations.
Spanning Trees and Spanners
, 1996
"... We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. ..."
Abstract

Cited by 139 (2 self)
 Add to MetaCart
We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. For instance, one may wish to connect components of a VLSI circuit by networks of wires, in a way that uses little surface area on the chip, draws little power, and propagates signals quickly. Similar problems come up in other applications such as telecommunications, road network design, and medical imaging [1]. One network design problem, the Traveling Salesman problem, is sufficiently important to have whole books devoted to it [79]. Problems involving some form of geometric minimum or maximum spanning tree also arise in the solution of other geometric problems such as clustering [12], mesh generation [56], and robot motion planning [93]. One can vary the network design problem in many w...
Efficient algorithms for geometric optimization
 ACM Comput. Surv
, 1998
"... We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear progra ..."
Abstract

Cited by 93 (12 self)
 Add to MetaCart
We review the recent progress in the design of efficient algorithms for various problems in geometric optimization. We present several techniques used to attack these problems, such as parametric searching, geometric alternatives to parametric searching, pruneandsearch techniques for linear programming and related problems, and LPtype problems and their efficient solution. We then describe a variety of applications of these and other techniques to numerous problems in geometric optimization, including facility location, proximity problems, statistical estimators and metrology, placement and intersection of polygons and polyhedra, and ray shooting and other querytype problems.
Nearly Linear Time Approximation Schemes for Euclidean TSP and other Geometric Problems
, 1997
"... We present a randomized polynomial time approximation scheme for Euclidean TSP in ! 2 that is substantially more efficient than our earlier scheme in [2] (and the scheme of Mitchell [21]). For any fixed c ? 1 and any set of n nodes in the plane, the new scheme finds a (1+ 1 c )approximation to ..."
Abstract

Cited by 91 (4 self)
 Add to MetaCart
We present a randomized polynomial time approximation scheme for Euclidean TSP in ! 2 that is substantially more efficient than our earlier scheme in [2] (and the scheme of Mitchell [21]). For any fixed c ? 1 and any set of n nodes in the plane, the new scheme finds a (1+ 1 c )approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. (Our earlier scheme ran in n O(c) time.) For points in ! d the algorithm runs in O(n(log n) (O( p dc)) d\Gamma1 ) time. This time is polynomial (actually nearly linear) for every fixed c; d. Designing such a polynomialtime algorithm was an open problem (our earlier algorithm in [2] ran in superpolynomial time for d 3). The algorithm generalizes to the same set of Euclidean problems handled by the previous algorithm, including Steiner Tree, kTSP, kMST, etc, although for kTSP and kMST the running time gets multiplied by k. We also use our ideas to design nearlylinear time approximation schemes for Euclidean vers...
Separators for spherepackings and nearest neighbor graphs
 J. ACM
, 1997
"... Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the ..."
Abstract

Cited by 72 (7 self)
 Add to MetaCart
Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the interior and those in the exterior of the sphere S, respectively, so that the larger part contains at most (1 � 1/(d � 2))n balls. This bound of O(k 1/d n 1�1/d) is the best possible in both n and k. We also present a simple randomized algorithm to find such a sphere in O(n) time. Our result implies that every knearest neighbor graphs of n points in d dimensions has a separator of size O(k 1/d n 1�1/d). In conjunction with a result of Koebe that every triangulated planar graph is isomorphic to the intersection graph of a diskpacking, our result not only gives a new geometric proof of the planar separator theorem of Lipton and Tarjan, but also generalizes it to higher dimensions. The separator algorithm can be used for point location and geometric divide and conquer in a fixed dimensional space.
Spanning Trees Short Or Small
 SIAM JOURNAL ON DISCRETE MATHEMATICS
"... We study the problem of finding small trees. Classical network design problems are considered with the additional constraint that only a specified number k of nodes are required to be connected in the solution. A prototypical example is the kMST problem in which we require a tree of minimum weight s ..."
Abstract

Cited by 66 (2 self)
 Add to MetaCart
We study the problem of finding small trees. Classical network design problems are considered with the additional constraint that only a specified number k of nodes are required to be connected in the solution. A prototypical example is the kMST problem in which we require a tree of minimum weight spanning at least k nodes in an edgeweighted graph. We show that the kMST problem is NPhard even for points in the Euclidean plane. We provide approximation algorithms with performance ratio 2 p k for the general edgeweighted case and O(k 1=4 ) for the case of points in the plane. Polynomialtime exact solutions are also presented for the class of treewidthbounded graphs which includes trees, seriesparallel graphs, and bounded bandwidth graphs, and for points on the boundary of a convex region in the Euclidean plane. We also investigate the problem of finding short trees, and more generally, that of finding networks with minimum diameter. A simple technique is used to prov...
ClosestPoint Problems in Computational Geometry
, 1997
"... This is the preliminary version of a chapter that will appear in the Handbook on Computational Geometry, edited by J.R. Sack and J. Urrutia. A comprehensive overview is given of algorithms and data structures for proximity problems on point sets in IR D . In particular, the closest pair problem, th ..."
Abstract

Cited by 65 (14 self)
 Add to MetaCart
This is the preliminary version of a chapter that will appear in the Handbook on Computational Geometry, edited by J.R. Sack and J. Urrutia. A comprehensive overview is given of algorithms and data structures for proximity problems on point sets in IR D . In particular, the closest pair problem, the exact and approximate postoffice problem, and the problem of constructing spanners are discussed in detail. Contents 1 Introduction 1 2 The static closest pair problem 4 2.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Algorithms that are optimal in the algebraic computation tree model . 5 2.2.1 An algorithm based on the Voronoi diagram . . . . . . . . . . . 5 2.2.2 A divideandconquer algorithm . . . . . . . . . . . . . . . . . . 5 2.2.3 A plane sweep algorithm . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A deterministic algorithm that uses indirect addressing . . . . . . . . . 7 2.3.1 The degraded grid . . . . . . . . . . . . . . . . . . ...
Geometric Applications of a Randomized Optimization Technique
 Discrete Comput. Geom
, 1999
"... We propose a simple, general, randomized technique to reduce certain geometric optimization problems to their corresponding decision problems. These reductions increase the expected time complexity by only a constant factor and eliminate extra logarithmic factors in previous, often more complicated, ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
We propose a simple, general, randomized technique to reduce certain geometric optimization problems to their corresponding decision problems. These reductions increase the expected time complexity by only a constant factor and eliminate extra logarithmic factors in previous, often more complicated, deterministic approaches (such as parametric searching). Faster algorithms are thus obtained for a variety of problems in computational geometry: finding minimal kpoint subsets, matching point sets under translation, computing rectilinear pcenters and discrete 1centers, and solving linear programs with k violations. 1 Introduction Consider the classic randomized algorithm for finding the minimum of r numbers minfA[1]; : : : ; A[r]g: Algorithm randmin 1. randomly pick a permutation hi 1 ; : : : ; i r i of h1; : : : ; ri 2. t /1 3. for k = 1; : : : ; r do 4. if A[i k ] ! t then 5. t / A[i k ] 6. return t By a wellknown fact [27, 44], the expected number of times that step 5 is execut...
Dynamic Euclidean Minimum Spanning Trees and Extrema of Binary Functions
, 1995
"... We maintain the minimum spanning tree of a point set in the plane, subject to point insertions and deletions, in amortized time O(n 1/2 log 2 n) per update operation. We reduce the problem to maintaining bichromatic closest pairs, which we solve in time O(n # ) per update. Our algorithm uses a novel ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
We maintain the minimum spanning tree of a point set in the plane, subject to point insertions and deletions, in amortized time O(n 1/2 log 2 n) per update operation. We reduce the problem to maintaining bichromatic closest pairs, which we solve in time O(n # ) per update. Our algorithm uses a novel construction, the ordered nearest neighbor path of a set of points. Our results generalize to higher dimensions, and to fully dynamic algorithms for maintaining minima of binary functions, including the diameter of a point set and the bichromatic farthest pair. 1 Introduction A dynamic geometric data structure is one that maintains the solution to some problem, defined on a geometric input such as a point set, as the input undergoes update operations such as insertions or deletions of single points. Dynamic algorithms have been studied for many geometric optimization problems, including closest pairs [7, 23, 25, 26], diameter [7, 26], width [4], convex hulls [15, 22], linear ...
Map Labeling and Its Generalizations
"... Map labeling is of fundamental importance in cartography and geographical information systems and is one of the areas targeted for research by the ACM Computational Geometry Impact Task Force. Previous work on map labeling has focused on the problem of placing maximal uniform, axisaligned, disjoint ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
Map labeling is of fundamental importance in cartography and geographical information systems and is one of the areas targeted for research by the ACM Computational Geometry Impact Task Force. Previous work on map labeling has focused on the problem of placing maximal uniform, axisaligned, disjoint rectangles on the plane so that each point feature to be labeled lies at the corner of one rectangle. Here, we consider a number of variants of the map labeling problem. We obtain three general types of results. First, we devise constantfactor polynomialtime approximation algorithms for labeling point features by rectangular labels, where the feature may lie anywhere on the boundary of its label region and where labeling rectangles may be placed in any orientation. These results generalize to the case of elliptical labels. Secondly, we consider the problem of labeling a map consisting of disjoint rectilinear line segments. We obtain constantfactor polynomialtime approximation algorithms for the general problem and an optimal algorithm for the special case where all segments are horizontal. Finally, we formulate a bicriteria version of the maplabeling problem and provide bicriteria polynomialtime approximation schemes for a number of such problems.