Results 11  20
of
83
A Probabilistic Calculus of Actions
, 1994
"... We present a symbolic machinery that admits both probabilistic and causal information about a given domain, and produces probabilistic statements about the effect of actions and the impact of observations. The calculus admits two types of conditioning operators: ordinary Bayes conditioning, P (yj ..."
Abstract

Cited by 31 (13 self)
 Add to MetaCart
We present a symbolic machinery that admits both probabilistic and causal information about a given domain, and produces probabilistic statements about the effect of actions and the impact of observations. The calculus admits two types of conditioning operators: ordinary Bayes conditioning, P (yjX = x), which represents the observation X = x, and causal conditioning, P (yjdo(X = x)), read: the probability of Y = y conditioned on holding X constant (at x) by deliberate action. Given a mixture of such observational and causal sentences, together with the topology of the causal graph, the calculus derives new conditional probabilities of both types, thus enabling one to quantify the effects of actions and observations. 1 Introduction Probabilistic methods, especially those based on graphical models have proven useful in tasks of predictions, abduction and belief revision [Pearl 1988, Heckerman 1990, Goldszmidt 1992, Darwiche 1993]. Their use in planning, however, remains less po...
Causal inference in statistics: An Overview
, 2009
"... This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all ca ..."
Abstract

Cited by 31 (8 self)
 Add to MetaCart
This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called “causal effects ” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret, ” “attribution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potentialoutcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
Causal Inference for Complex Longitudinal Data: the continuous case
 Annals of Statistics
, 2001
"... this paper we consider two fundamental issues concerning Robins' theory. Firstly, do his assumed relations (between observed and unobservedfactual and counterfactualrandom variables) place restrictions on the distribution of the observed variables. If the answer is yes, adopting his appro ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
this paper we consider two fundamental issues concerning Robins' theory. Firstly, do his assumed relations (between observed and unobservedfactual and counterfactualrandom variables) place restrictions on the distribution of the observed variables. If the answer is yes, adopting his approach means making restrictive implicit assumptionsnot very desirable. If however the answer is no, his approach is neutral. One can freely use it in modelling and estimation, exploring the consequences (for the unobserved variables) of the model. This follows the highly succesful tradition in all sciences of making thought experiments. In what philosophical sense counterfactuals actually exist seems to us less relevant. But it is important to know if a certain thought experiment is a priori ruled out by existing data
Nonparametric Analysis Of Randomized Experiments With Missing Covariate And Outcome Data
"... Analysis of randomized experiments with missing covariate and outcome data is problematic because the population parameters of interest are not identified unless one makes untestable assumptions about the distribution of the missing data. This paper shows how population parameters can be bounded wit ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
Analysis of randomized experiments with missing covariate and outcome data is problematic because the population parameters of interest are not identified unless one makes untestable assumptions about the distribution of the missing data. This paper shows how population parameters can be bounded without making untestable distributional assumptions. Bounds are also derived under the assumption that covariate data are missing completely at random. In each case the bounds are sharp; they exhaust all of the information that is available given the data and the maintained assumptions. The bounds are illustrated with applications to data obtained from a clinical trial and data relating family structure to the probability that a youth graduates from high school. Key Words: Identification, attrition, bounds We thank William G. Henderson, Domenic Reda, and David Williams of the Edward Hines, Jr., Hospital, U.S. Department of Veterans Affairs Cooperative Studies Program Coordinating Center, Hines...
Trimming for Bounds on Treatment Effects with Missing Outcomes
, 2002
"... for helpful discussions and suggestions. The views expressed in this paper are those of the author and not ..."
Abstract

Cited by 24 (6 self)
 Add to MetaCart
for helpful discussions and suggestions. The views expressed in this paper are those of the author and not
THE SCIENTIFIC MODEL OF CAUSALITY
, 2005
"... Causality is a very intuitive notion that is difficult to make precise without lapsing into tautology. Two ingredients are central to any definition: (1) a set of possible outcomes (counterfactuals) generated by a function of a set of ‘‘factors’ ’ or ‘‘determinants’ ’ and (2) a manipulation where on ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
Causality is a very intuitive notion that is difficult to make precise without lapsing into tautology. Two ingredients are central to any definition: (1) a set of possible outcomes (counterfactuals) generated by a function of a set of ‘‘factors’ ’ or ‘‘determinants’ ’ and (2) a manipulation where one (or more) of the ‘‘factors’ ’ or ‘‘determinants’’ is changed. An effect is realized as a change in the argument of a stable function that produces the same change in the outcome for a class of interventions that change the ‘‘factors’ ’ by the same amount. The outcomes are compared at different levels of the factors or generating variables. Holding all factors save one at a constant level, the change in the outcome associated with manipulation of the varied factor is called a causal effect of the manipulated factor. This definition, or some version of it, goes back to Mill (1848) and Marshall (1890). Haavelmo’s (1943) made it more precise within the context of linear equations models. The phrase ‘ceteris paribus’ (everything else held constant) is a mainstay of economic analysis
Causal Inference from Indirect Experiments
, 1995
"... Indirect experiments are studies in which randomized control is replaced by randomized encouragement, that is, subjects are encouraged, rather than forced to receive treatment programs. The purpose of this paper is to bring to the attention of experimental researchers simple mathematical results tha ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
Indirect experiments are studies in which randomized control is replaced by randomized encouragement, that is, subjects are encouraged, rather than forced to receive treatment programs. The purpose of this paper is to bring to the attention of experimental researchers simple mathematical results that enable us to assess, from indirect experiments, the strength with which causal influences operate among variables of interest. The results reveal that despite the laxity of the encouraging instrument, indirect experimentation can yield significant and sometimes accurate information on the impact of a program on the population as a whole, as well as on the particular individuals who participated in the program. Keywords: Causal reasoning, treatment evaluation, noncompliance, graphical models 1 Introduction Standard experimental studies in the biological, medical, and behavioral sciences invariably invoke the instrument of randomized control, that is, subjects are assigned at random to va...
Marginal mean models for dynamic regimes
 the Journal of the American Statistical Association
, 2001
"... you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncommercial use. Please contact the publisher regarding any further use of this work. Publisher contact inform ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncommercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
Statistics and Causal Inference: A Review
, 2003
"... This paper aims at assisting empirical researchers benefit from recent advances in causal inference. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assump ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
This paper aims at assisting empirical researchers benefit from recent advances in causal inference. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, and the conditional nature of causal claims inferred from nonexperimental studies. These emphases are illustrated through a brief survey of recent results, including the control of confounding, the assessment of causal effects, the interpretation of counterfactuals, and a symbiosis between counterfactual and graphical methods of analysis.