Results 1  10
of
69
Theorem Proving Modulo
 Journal of Automated Reasoning
"... Abstract. Deduction modulo is a way to remove computational arguments from proofs by reasoning modulo a congruence on propositions. Such a technique, issued from automated theorem proving, is of much wider interest because it permits to separate computations and deductions in a clean way. The first ..."
Abstract

Cited by 112 (18 self)
 Add to MetaCart
(Show Context)
Abstract. Deduction modulo is a way to remove computational arguments from proofs by reasoning modulo a congruence on propositions. Such a technique, issued from automated theorem proving, is of much wider interest because it permits to separate computations and deductions in a clean way. The first contribution of this paper is to define a sequent calculus modulo that gives a proof theoretic account of the combination of computations and deductions. The congruence on propositions is handled via rewrite rules and equational axioms. Rewrite rules apply to terms and also directly to atomic propositions. The second contribution is to give a complete proof search method, called Extended Narrowing and Resolution (ENAR), for theorem proving modulo such congruences. The completeness of this method is proved with respect to provability in sequent calculus modulo. An important application is that higherorder logic can be presented as a theory modulo. Applying the Extended Narrowing and Resolution method to this presentation of higherorder logic subsumes full higherorder resolution.
Abstract Data Type Systems
 Theoretical Computer Science
, 1997
"... HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract

Cited by 54 (10 self)
 Add to MetaCart
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Embedding pure type systems in the lambdaPicalculus modulo
 TLCA
, 2007
"... The lambdaPicalculus allows to express proofs of minimal predicate logic. It can be extended, in a very simple way, by adding computation rules. This leads to the lambdaPicalculus modulo. We show in this paper that this simple extension is surprisingly expressive and, in particular, that all fu ..."
Abstract

Cited by 34 (9 self)
 Add to MetaCart
(Show Context)
The lambdaPicalculus allows to express proofs of minimal predicate logic. It can be extended, in a very simple way, by adding computation rules. This leads to the lambdaPicalculus modulo. We show in this paper that this simple extension is surprisingly expressive and, in particular, that all functional Pure Type Systems, such as the system F, or the Calculus of Constructions, can be embedded in it. And, moreover, that this embedding is conservative under termination hypothesis.
Arithmetic as a theory modulo
 Proceedings of RTA’05
, 2005
"... Abstract. We present constructive arithmetic in Deduction modulo with rewrite rules only. In natural deduction and in sequent calculus, the cut elimination theorem and the analysis of the structure of cut free proofs is the key to many results about predicate logic with no axioms: analyticity and no ..."
Abstract

Cited by 29 (3 self)
 Add to MetaCart
(Show Context)
Abstract. We present constructive arithmetic in Deduction modulo with rewrite rules only. In natural deduction and in sequent calculus, the cut elimination theorem and the analysis of the structure of cut free proofs is the key to many results about predicate logic with no axioms: analyticity and nonprovability results, completeness results for proof search algorithms, decidability results for fragments, constructivity results for the intuitionistic case... Unfortunately, the properties of cut free proofs do not extend in the presence of axioms and the cut elimination theorem is not as powerful in this case as it is in pure logic. This motivates the extension of the notion of cut for various axiomatic theories such as arithmetic, Church’s simple type theory, set theory and others. In general, we can say that a new axiom will necessitate a specific extension of the notion of cut: there still is no notion of cut general enough to be applied to any axiomatic theory. Deduction modulo [2, 3] is one attempt, among others, towards this aim.
From proof nets to the free * autonomous category
 Logical Methods in Computer Science, 2(4:3):1–44, 2006. Available from: http://arxiv.org/abs/cs/0605054. [McK05] Richard McKinley. Classical categories and deep inference. In Structures and Deduction 2005 (Satellite Workshop of ICALP’05
, 2005
"... Vol. 2 (4:3) 2006, pp. 1–44 www.lmcsonline.org ..."
(Show Context)
CoLoR: a Coq library on wellfounded rewrite relations and its application to the automated verification of termination certificates
, 2010
"... ..."
C.: Principles of Superdeduction
 In: Proc. of the 22nd Annual IEEE Symposium on Logic in Computer Science (LICS
, 2007
"... In predicate logic, the proof that a theorem P holds in a theory Th is typically conducted in natural deduction or in the sequent calculus using all the information contained in the theory in a uniform way. Introduced ten years ago, Deduction modulo allows us to make use of the computational part of ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
(Show Context)
In predicate logic, the proof that a theorem P holds in a theory Th is typically conducted in natural deduction or in the sequent calculus using all the information contained in the theory in a uniform way. Introduced ten years ago, Deduction modulo allows us to make use of the computational part of the theory Th for true computations modulo which deductions are performed. Focussing on the sequent calculus, this paper presents and studies the dual concept where the theory is used to enrich the deduction system with new deduction rules in a systematic, correct and complete way. We call such a new deduction system “superdeduction”. We introduce a proofterm language and a cutelimination procedure both based on Christian Urban’s work on classical sequent calculus. Strong normalisation is proven under appropriate and natural hypothesis, therefore ensuring the consistency of the embedded theory and of the deduction system. The proofs obtained in such a new system are much closer to the human intuition and practice. We consequently show how superdeduction along with deduction modulo can be used to ground the formal foundations of new extendible proof assistants. We finally present lemuridæ, our current implementation of superdeduction modulo. 1
Semantic cut elimination in the intuitionistic sequent calculus
 Typed Lambda Calculi and Applications, number 3461 in Lectures
, 2005
"... Abstract. Cut elimination is a central result of the proof theory. This paper proposes a new approach for proving the theorem for Gentzen’s intuitionistic sequent calculus LJ, that relies on completeness of the cutfree calculus with respect to Kripke Models. The proof defines a general framework to ..."
Abstract

Cited by 15 (10 self)
 Add to MetaCart
(Show Context)
Abstract. Cut elimination is a central result of the proof theory. This paper proposes a new approach for proving the theorem for Gentzen’s intuitionistic sequent calculus LJ, that relies on completeness of the cutfree calculus with respect to Kripke Models. The proof defines a general framework to extend the cut elimination result to other intuitionistic deduction systems, in particular to deduction modulo provided the rewrite system verifies some properties. We also give an example of rewrite system for which cut elimination holds but that doesn’t enjoys proof normalization.
Truth value algebras and proof normalization
 In TYPES 2006
, 2006
"... Abstract. We extend the notion of Heyting algebra to a notion of truth values algebra and prove that a theory is consistent if and only if it has a Bvalued model for some non trivial truth values algebra B. A theory that has a Bvalued model for all truth values algebras B is said to be superconsi ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
(Show Context)
Abstract. We extend the notion of Heyting algebra to a notion of truth values algebra and prove that a theory is consistent if and only if it has a Bvalued model for some non trivial truth values algebra B. A theory that has a Bvalued model for all truth values algebras B is said to be superconsistent. We prove that superconsistency is a modeltheoretic sufficient condition for strong normalization. 1
Regaining Cut Admissibility in Deduction Modulo using Abstract Completion
, 2009
"... Deduction modulo is a way to combine computation and deduction in proofs, by applying the inference rules of a deductive system (e.g. natural deduction or sequent calculus) modulo some congruence that we assume here to be presented by a set of rewrite rules. Using deduction modulo is equivalent to p ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Deduction modulo is a way to combine computation and deduction in proofs, by applying the inference rules of a deductive system (e.g. natural deduction or sequent calculus) modulo some congruence that we assume here to be presented by a set of rewrite rules. Using deduction modulo is equivalent to proving in a theory corresponding to the rewrite rules, and leads to proofs that are often shorter and more readable. However, cuts may be not admissible anymore. We define a new system, the unfolding sequent calculus, and prove its equivalence with the sequent calculus modulo, especially w.r.t. cutfree proofs. It permits to show that it is even undecidable to know if cuts can be eliminated in the sequent calculus modulo a given rewrite system. Then, to recover the cut admissibility, we propose a procedure to complete the rewrite system such that the sequent calculus modulo the resulting system admits cuts. This is done by generalizing the KnuthBendix completion in a nontrivial way, using the framework of abstract canonical systems. These