Results 1  10
of
35
The HigherOrder Recursive Path Ordering
 FOURTEENTH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE
, 1999
"... This paper extends the termination proof techniques based on reduction orderings to a higherorder setting, by adapting the recursive path ordering definition to terms of a typed lambdacalculus generated by a signature of polymorphic higherorder function symbols. The obtained ordering is wellfoun ..."
Abstract

Cited by 44 (10 self)
 Add to MetaCart
This paper extends the termination proof techniques based on reduction orderings to a higherorder setting, by adapting the recursive path ordering definition to terms of a typed lambdacalculus generated by a signature of polymorphic higherorder function symbols. The obtained ordering is wellfounded, compatible with fireductions and with polymorphic typing, monotonic with respect to the function symbols, and stable under substitution. It can therefore be used to prove the strong normalizationproperty of higherorder calculi in which constants can be defined by higherorder rewrite rules. For example, the polymorphic version of Gödel's recursor for the natural numbers is easily oriented. And indeed, our ordering is polymorphic, in the sense that a single comparison allows to prove the termination property of all monomorphic instances of a polymorphic rewrite rule. Several other nontrivial examples are given which examplify the expressive power of the ordering.
Pure Pattern Type Systems
 In POPL’03
, 2003
"... We introduce a new framework of algebraic pure type systems in which we consider rewrite rules as lambda terms with patterns and rewrite rule application as abstraction application with builtin matching facilities. This framework, that we call “Pure Pattern Type Systems”, is particularly wellsuite ..."
Abstract

Cited by 43 (20 self)
 Add to MetaCart
We introduce a new framework of algebraic pure type systems in which we consider rewrite rules as lambda terms with patterns and rewrite rule application as abstraction application with builtin matching facilities. This framework, that we call “Pure Pattern Type Systems”, is particularly wellsuited for the foundations of programming (meta)languages and proof assistants since it provides in a fully unified setting higherorder capabilities and pattern matching ability together with powerful type systems. We prove some standard properties like confluence and subject reduction for the case of a syntactic theory and under a syntactical restriction over the shape of patterns. We also conjecture the strong normalization of typable terms. This work should be seen as a contribution to a formal connection between logics and rewriting, and a step towards new proof engines based on the CurryHoward isomorphism.
TypeBased Termination of Recursive Definitions
, 2002
"... This article The purpose of this paper is to introduce b, a simply typed calculus that supports typebased recursive definitions. Although heavily inspired from previous work by Giménez (Giménez 1998) and closely related to recent work by Amadio and Coupet (Amadio and CoupetGrimal 1998), the techn ..."
Abstract

Cited by 39 (3 self)
 Add to MetaCart
This article The purpose of this paper is to introduce b, a simply typed calculus that supports typebased recursive definitions. Although heavily inspired from previous work by Giménez (Giménez 1998) and closely related to recent work by Amadio and Coupet (Amadio and CoupetGrimal 1998), the technical machinery behind our system puts a slightly different emphasis on the interpretation of types. More precisely, we formalize the notion of typebased termination using a restricted form of type dependency (a.k.a. indexed types), as popularized by (Xi and Pfenning 1998; Xi and Pfenning 1999). This leads to a simple and intuitive system which is robust under several extensions, such as mutually inductive datatypes and mutually recursive function definitions; however, such extensions are not treated in the paper
Definitions by Rewriting in the Calculus of Constructions
, 2001
"... The main novelty of this paper is to consider an extension of the Calculus of Constructions where predicates can be defined with a general form of rewrite rules. ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
The main novelty of this paper is to consider an extension of the Calculus of Constructions where predicates can be defined with a general form of rewrite rules.
Matching Power
 Proceedings of RTA’2001, Lecture Notes in Computer Science, Utrecht (The Netherlands
, 2001
"... www.loria.fr/{~cirstea,~ckirchne,~lliquori} Abstract. In this paper we give a simple and uniform presentation of the rewriting calculus, also called Rho Calculus. In addition to its simplicity, this formulation explicitly allows us to encode complex structures such as lists, sets, and objects. We pr ..."
Abstract

Cited by 31 (20 self)
 Add to MetaCart
www.loria.fr/{~cirstea,~ckirchne,~lliquori} Abstract. In this paper we give a simple and uniform presentation of the rewriting calculus, also called Rho Calculus. In addition to its simplicity, this formulation explicitly allows us to encode complex structures such as lists, sets, and objects. We provide extensive examples of the calculus, and we focus on its ability to represent some object oriented calculi, namely the Lambda Calculus of Objects of Fisher, Honsell, and Mitchell, and the Object Calculus of Abadi and Cardelli. Furthermore, the calculus allows us to get object oriented constructions unreachable in other calculi. In summa, we intend to show that because of its matching ability, the Rho Calculus represents a lingua franca to naturally encode many paradigms of computations. This enlightens the capabilities of the rewriting calculus based language ELAN to be used as a logical as well as powerful semantical framework. 1
Termination Checking with Types
, 1999
"... The paradigm of typebased termination is explored for functional programming with recursive data types. The article introduces , a lambdacalculus with recursion, inductive types, subtyping and bounded quanti cation. Decorated type variables representing approximations of inductive types ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
The paradigm of typebased termination is explored for functional programming with recursive data types. The article introduces , a lambdacalculus with recursion, inductive types, subtyping and bounded quanti cation. Decorated type variables representing approximations of inductive types are used to track the size of function arguments and return values. The system is shown to be type safe and strongly normalizing. The main novelty is a bidirectional type checking algorithm whose soundness is established formally.
The Calculus of Algebraic Constructions
 In Proc. of the 10th Int. Conf. on Rewriting Techniques and Applications, LNCS 1631
, 1999
"... Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by hi ..."
Abstract

Cited by 27 (10 self)
 Add to MetaCart
Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrite rules. In this paper, we prove that almost all CIC can be seen as a CAC, and that it can be further extended with nonstrictly positive types and inductiverecursive types together with nonfree constructors and patternmatching on defined symbols. 1.
Rewriting calculus with(out) types
 Proceedings of the fourth workshop on rewriting logic and applications
, 2002
"... The last few years have seen the development of a new calculus which can be considered as an outcome of the last decade of various researches on (higher order) term rewriting systems, and lambda calculi. In the Rewriting Calculus (or Rho Calculus, ρCal), algebraic rules are considered as sophisticat ..."
Abstract

Cited by 22 (13 self)
 Add to MetaCart
The last few years have seen the development of a new calculus which can be considered as an outcome of the last decade of various researches on (higher order) term rewriting systems, and lambda calculi. In the Rewriting Calculus (or Rho Calculus, ρCal), algebraic rules are considered as sophisticated forms of “lambda terms with patterns”, and rule applications as lambda applications with pattern matching facilities. The calculus can be customized to work modulo sophisticated theories, like commutativity, associativity, associativitycommutativity, etc. This allows us to encode complex structures such as list, sets, and more generally objects. The calculus can either be presented “à la Curry ” or “à la Church ” without sacrificing readability and without complicating too much the metatheory. Many static type systems can be easily pluggedin on top of the calculus in the spirit of the rich typeoriented literature. The Rewriting Calculus could represent a lingua franca to encode many paradigms of computations together with a formal basis used to build powerful theorem provers based on lambda calculus and efficient rewriting, and a step towards new proof engines based on the CurryHoward isomorphism. 1
Combining HigherOrder and FirstOrder Computation Using ρcalculus: Towards a Semantics of ELAN
 In Frontiers of Combining Systems 2
, 1999
"... The ρcalculus permits to express in a uniform and simple way firstorder rewriting, λcalculus and nondeterministic computations as well as their combination. In this paper, we present the main components of the ρcalculus and we give a full firstorder presentation of this rewriting calculus using ..."
Abstract

Cited by 20 (9 self)
 Add to MetaCart
The ρcalculus permits to express in a uniform and simple way firstorder rewriting, λcalculus and nondeterministic computations as well as their combination. In this paper, we present the main components of the ρcalculus and we give a full firstorder presentation of this rewriting calculus using an explicit substitution setting, called ρσ, that generalizes the λσcalculus. The basic properties of the nonexplicit and explicit substitution versions are presented. We then detail how to use the ρcalculus to give an operational semantics to the rewrite rules of the ELAN language. 1
Inductive types in the calculus of algebraic constructions
 FUNDAMENTA INFORMATICAE 65(12) (2005) 61–86 JOURNAL VERSION OF TLCA’03
, 2005
"... In a previous work, we proved that almost all of the Calculus of Inductive Constructions (CIC), the basis of the proof assistant Coq, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrit ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
In a previous work, we proved that almost all of the Calculus of Inductive Constructions (CIC), the basis of the proof assistant Coq, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrite rules. In this paper, we prove that CIC as a whole can be seen as a CAC, and that it can be extended with nonstrictly positive types and inductiverecursive types together with nonfree constructors and patternmatching on defined symbols.