Results 1  10
of
119
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 1875 (38 self)
 Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simplest, or both. A randomized algorithm is an algorithm that uses random numbers to influence the choices it makes in the course of its computation. Thus its behavior (typically quantified as running time or quality of output) varies from
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Elliptic Curves And Primality Proving
 Math. Comp
, 1993
"... The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. ..."
Abstract

Cited by 162 (22 self)
 Add to MetaCart
The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm.
Discrete Logarithms in Finite Fields and Their Cryptographic Significance
, 1984
"... Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its appl ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2 n ). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2 n ) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2 n ) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2 n ) ought to be avoided in all cryptographic applications. On the other hand, ...
Probabilistic Algorithms In Finite Fields
 SIAM J. Comput
, 1979
"... We present probabilistic algorithms for the problems of finding an irreducible polynomial of degree n over a finite field, finding roots of a polynomial, and factoring a polynomial into its irreducible factors over a finite field. All of these problems are of importance in algebraic coding theor ..."
Abstract

Cited by 82 (1 self)
 Add to MetaCart
We present probabilistic algorithms for the problems of finding an irreducible polynomial of degree n over a finite field, finding roots of a polynomial, and factoring a polynomial into its irreducible factors over a finite field. All of these problems are of importance in algebraic coding theory, algebraic symbol manipulation, and number theory. These algorithms have a very transparent, easy to program structure. For finite fields of large characteristic p, so that exhaustive search throng Zp is not feasible, our algorithms are of lower order in the degrees of the polynomial and fields in question, than previously published algorithms.
Subquadratictime factoring of polynomials over finite fields
 Math. Comp
, 1998
"... Abstract. New probabilistic algorithms are presented for factoring univariate polynomials over finite fields. The algorithms factor a polynomial of degree n over a finite field of constant cardinality in time O(n 1.815). Previous algorithms required time Θ(n 2+o(1)). The new algorithms rely on fast ..."
Abstract

Cited by 67 (11 self)
 Add to MetaCart
Abstract. New probabilistic algorithms are presented for factoring univariate polynomials over finite fields. The algorithms factor a polynomial of degree n over a finite field of constant cardinality in time O(n 1.815). Previous algorithms required time Θ(n 2+o(1)). The new algorithms rely on fast matrix multiplication techniques. More generally, to factor a polynomial of degree n over the finite field Fq with q elements, the algorithms use O(n 1.815 log q) arithmetic operations in Fq. The new “baby step/giant step ” techniques used in our algorithms also yield new fast practical algorithms at superquadratic asymptotic running time, and subquadratictime methods for manipulating normal bases of finite fields. 1.
Discrete logarithms in gf(p) using the number field sieve
 SIAM J. Discrete Math
, 1993
"... Recently, several algorithms using number field sieves have been given to factor a number n in heuristic expected time Ln[1/3; c], where Ln[v; c] = exp{(c + o(1))(log n) v (log log n) 1−v}, for n → ∞. In this paper we present an algorithm to solve the discrete logarithm problem for GF (p) with heur ..."
Abstract

Cited by 63 (1 self)
 Add to MetaCart
Recently, several algorithms using number field sieves have been given to factor a number n in heuristic expected time Ln[1/3; c], where Ln[v; c] = exp{(c + o(1))(log n) v (log log n) 1−v}, for n → ∞. In this paper we present an algorithm to solve the discrete logarithm problem for GF (p) with heuristic expected running time Lp[1/3; 3 2/3]. For numbers of a special form, there is an asymptotically slower but more practical version of the algorithm.
A New Polynomial Factorization Algorithm and its Implementation
 Journal of Symbolic Computation
, 1996
"... We consider the problem of factoring univariate polynomials over a finite field. We demonstrate that the new baby step/giant step factoring method, recently developed by Kaltofen & Shoup, can be made into a very practical algorithm. We describe an implementation of this algorithm, and present the re ..."
Abstract

Cited by 63 (5 self)
 Add to MetaCart
We consider the problem of factoring univariate polynomials over a finite field. We demonstrate that the new baby step/giant step factoring method, recently developed by Kaltofen & Shoup, can be made into a very practical algorithm. We describe an implementation of this algorithm, and present the results of empirical tests comparing this new algorithm with others. When factoring polynomials modulo large primes, the algorithm allows much larger polynomials to be factored using a reasonable amount of time and space than was previously possible. For example, this new software has been used to factor a "generic" polynomial of degree 2048 modulo a 2048bit prime in under 12 days on a Sun SPARCstation 10, using 68 MB of main memory. 1 Introduction We consider the problem of factoring a univariate polynomial of degree n over the field F p of p elements, where p is prime. This problem has been wellstudied, and many algorithms for its solution have been proposed. In general, the running tim...
Nearly Optimal Algorithms For Canonical Matrix Forms
, 1993
"... A Las Vegas type probabilistic algorithm is presented for finding the Frobenius canonical form of an n x n matrix T over any field K. The algorithm requires O~(MM(n)) = MM(n) (log n) ^ O(1) operations in K, where O(MM(n)) operations in K are sufficient to multiply two n x n matrices over K. This nea ..."
Abstract

Cited by 54 (11 self)
 Add to MetaCart
A Las Vegas type probabilistic algorithm is presented for finding the Frobenius canonical form of an n x n matrix T over any field K. The algorithm requires O~(MM(n)) = MM(n) (log n) ^ O(1) operations in K, where O(MM(n)) operations in K are sufficient to multiply two n x n matrices over K. This nearly matches the lower bound of \Omega(MM(n)) operations in K for this problem, and improves on the O(n^4) operations in K required by the previously best known algorithms. We also demonstrate a fast parallel implementation of our algorithm for the Frobenius form, which is processorefficient on a PRAM. As an application we give an algorithm to evaluate a polynomial g(x) in K[x] at T which requires only O~(MM(n)) operations in K when deg g < n^2. Other applications include sequential and parallel algorithms for computing the minimal and characteristic polynomials of a matrix, the rational Jordan form of a matrix, for testing whether two matrices are similar, and for matrix powering, which are substantially faster than those previously known.