Results 1  10
of
33
Direct and Indirect Effects
, 2005
"... The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This pape ..."
Abstract

Cited by 139 (24 self)
 Add to MetaCart
The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This paper presents a new way of defining the effect transmitted through a restricted set of paths, without controlling variables on the remaining paths. This permits the assessment of a more natural type of direct and indirect effects, one that is applicable in both linear and nonlinear models and that has broader policyrelated interpretations. The paper establishes conditions under which such assessments can be estimated consistently from experimental and nonexperimental data, and thus extends pathanalytic techniques to nonlinear and nonparametric models.
Causal inference in statistics: An Overview
, 2009
"... This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all ca ..."
Abstract

Cited by 68 (11 self)
 Add to MetaCart
This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called “causal effects ” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret, ” “attribution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potentialoutcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
Appendum to Identification of Conditional Interventional Distributions
, 2007
"... The subject of this paper is the elucidation of effects of actions from causal assumptions represented as a directed graph, and statistical knowledge given as a probability distribution. In particular, we are interested in predicting distributions on postaction outcomes given a set of measurements. ..."
Abstract

Cited by 60 (27 self)
 Add to MetaCart
The subject of this paper is the elucidation of effects of actions from causal assumptions represented as a directed graph, and statistical knowledge given as a probability distribution. In particular, we are interested in predicting distributions on postaction outcomes given a set of measurements. We provide a necessary and sufficient graphical condition for the cases where such distributions can be uniquely computed from the available information, as well as an algorithm which performs this computation whenever the condition holds. Furthermore, we use our results to prove completeness of docalculus [Pearl, 1995] for the same identification problem, and show applications to sequential decision making. 1
Identification of joint interventional distributions in recursive semimarkovian causal models
"... This paper is concerned with estimating the effects of actions from causal assumptions, represented concisely as a directed graph, and statistical knowledge, given as a probability distribution. We provide a necessary and sufficient graphical condition for the cases when the causal effect of an arbi ..."
Abstract

Cited by 55 (20 self)
 Add to MetaCart
This paper is concerned with estimating the effects of actions from causal assumptions, represented concisely as a directed graph, and statistical knowledge, given as a probability distribution. We provide a necessary and sufficient graphical condition for the cases when the causal effect of an arbitrary set of variables on another arbitrary set can be determined uniquely from the available information, as well as an algorithm which computes the effect whenever this condition holds. Furthermore, we use our results to prove completeness of docalculus [Pearl, 1995], and a version of an identification algorithm in [Tian, 2002] for the same identification problem. Finally, we derive a complete characterization of semiMarkovian models in which all causal effects are identifiable.
On the identification of causal effects
, 2003
"... This paper deals with the problem of inferring causeeffect relationships from a combination of data and theoretical assumptions. This problem arises in diverse fields such as artificial intelligence, statistics, cognitive science, economics, and the health and social sciences. For example, investig ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
(Show Context)
This paper deals with the problem of inferring causeeffect relationships from a combination of data and theoretical assumptions. This problem arises in diverse fields such as artificial intelligence, statistics, cognitive science, economics, and the health and social sciences. For example, investigators in the health sciences are
What counterfactuals can be tested
 In Proceedings of the TwentyThird Conference on Uncertainty in Artificial Intelligence
, 2007
"... Counterfactual statements, e.g., ”my headache would be gone had I taken an aspirin ” are central to scientific discourse, and are formally interpreted as statements derived from ”alternative worlds”. However, since they invoke hypothetical states of affairs, often incompatible with what is actual ..."
Abstract

Cited by 22 (9 self)
 Add to MetaCart
Counterfactual statements, e.g., ”my headache would be gone had I taken an aspirin ” are central to scientific discourse, and are formally interpreted as statements derived from ”alternative worlds”. However, since they invoke hypothetical states of affairs, often incompatible with what is actually known or observed, testing counterfactuals is fraught with conceptual and practical difficulties. In this paper, we provide a complete characterization of ”testable counterfactuals, ” namely, counterfactual statements whose probabilities can be inferred from physical experiments. We provide complete procedures for discerning whether a given counterfactual is testable and, if so, expressing its probability in terms of experimental data. 1
Transportability of Causal Effects: Completeness Results
, 2012
"... The study of transportability aims to identify conditions under which causal information learned from experiments can be reused in a different environment where only passive observations can be collected. The theory introduced in [Pearl and Bareinboim, 2011] (henceforth [PB, 2011]) defines formal co ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
(Show Context)
The study of transportability aims to identify conditions under which causal information learned from experiments can be reused in a different environment where only passive observations can be collected. The theory introduced in [Pearl and Bareinboim, 2011] (henceforth [PB, 2011]) defines formal conditions for such transfer but falls short of providing an effective procedure for deciding whether transportability is feasible for a given set of assumptions about differences between the source and target domains. This paper provides such procedure. It establishes a necessary and sufficient condition for deciding when causal effects in the target domain are estimable from both the statistical information available and the causal information transferred from the experiments. The paper further provides a complete algorithm for computing the transport formula, that is, a way of fusing experimental and observational information to synthesize an estimate of the desired causal relation.
Causal inference by surrogate experiments: zidentifiability
, 2012
"... We address the problem of estimating the effect of intervening on a set of variables X from experiments on a different set, Z, that is more accessible to manipulation. This problem, which we call zidentifiability, reduces to ordinary identifiability when Z = ∅ and, like the latter, can be given sy ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
We address the problem of estimating the effect of intervening on a set of variables X from experiments on a different set, Z, that is more accessible to manipulation. This problem, which we call zidentifiability, reduces to ordinary identifiability when Z = ∅ and, like the latter, can be given syntactic characterization using the docalculus [Pearl, 1995; 2000]. We provide a graphical necessary and sufficient condition for zidentifiability for arbitrary sets X, Z, and Y (the outcomes). We further develop a complete algorithm for computing the causal effect of X on Y using information provided by experiments on Z. Finally, we use our results to prove completeness of docalculus relative to zidentifiability, a result that does not follow from completeness relative to ordinary identifiability.
Statistics and Causal Inference: A Review
, 2003
"... This paper aims at assisting empirical researchers benefit from recent advances in causal inference. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assump ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
This paper aims at assisting empirical researchers benefit from recent advances in causal inference. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, and the conditional nature of causal claims inferred from nonexperimental studies. These emphases are illustrated through a brief survey of recent results, including the control of confounding, the assessment of causal effects, the interpretation of counterfactuals, and a symbiosis between counterfactual and graphical methods of analysis.