Results 1 
1 of
1
Interconnection of Object Specifications
 Formal Methods and Object Technology
, 1996
"... ing yet further from reality, we might proscribe the simultaneous effect of two or more methods on an object's state; doing so, we impose a monoid structure on the fixed set of methods proper to an object class. Applying methods one after the other corresponds to multiplication in the monoid, a ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
ing yet further from reality, we might proscribe the simultaneous effect of two or more methods on an object's state; doing so, we impose a monoid structure on the fixed set of methods proper to an object class. Applying methods one after the other corresponds to multiplication in the monoid, and applying no methods corresponds to the identity of the monoid. A monoid is a set M with an associative binary operation ffl M : M \ThetaM ! M , usually referred to as `multiplication', which has an identity element e M 2 M . If M = (M; ffl M ; e M ) is a monoid, we often write just M for M, and e for e M ; moreover for m;m 0 2 M , we usually write mm 0 instead of m ffl M m 0 . For example, A , the set of lists containing elements of A, together with concatenation ++ : A \ThetaA ! A and the empty list [ ] 2 A , is a monoid. This example is especially important for the material in later sections. A monoid homomorphism is a structure preserving map between the carriers of ...