Results 1  10
of
182
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 520 (40 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows: ffl We devise a model for dynamic graph algorithms, based on performing queries and updates on an implicit representation of the drawing, and we show its applications. ffl We present several efficient dynamic drawing algorithms for trees, seriesparallel digraphs, planar stdigraphs, and planar graphs. These algorithms adopt a variety of representations (e.g., straightline, polyline, visibility), and update the drawing in a smooth way.
StraightLine Drawing Algorithms for Hierarchical Graphs and Clustered Graphs
 Algorithmica
, 1999
"... Hierarchical graphs and clustered graphs are useful nonclassical graph models for structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures. Both have applications in CASE tools, software visualizatio ..."
Abstract

Cited by 59 (12 self)
 Add to MetaCart
Hierarchical graphs and clustered graphs are useful nonclassical graph models for structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures. Both have applications in CASE tools, software visualization, and VLSI design. Drawing algorithms for hierarchical graphs have been well investigated. However, the problem of straightline representation has not been solved completely. In this paper, we answer the question: does every planar hierarchical graph admit a planar straightline hierarchical drawing? We present an algorithm that constructs such drawings in linear time. Also, we answer a basic question for clustered graphs, that is, does every planar clustered graph admit a planar straightline drawing with clusters drawn as convex polygons? We provide a method for such drawings based on our algorithm for hierarchical graphs.
Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses
, 1998
"... . We consider the problem of coding planar graphs by binary strings. Depending on whether O(1)time queries for adjacency and degree are supported, we present three sets of coding schemes which all take linear time for encoding and decoding. The encoding lengths are significantly shorter than th ..."
Abstract

Cited by 50 (11 self)
 Add to MetaCart
. We consider the problem of coding planar graphs by binary strings. Depending on whether O(1)time queries for adjacency and degree are supported, we present three sets of coding schemes which all take linear time for encoding and decoding. The encoding lengths are significantly shorter than the previously known results in each case. 1 Introduction This paper investigates the problem of encoding a graph G with n nodes and m edges into a binary string S. This problem has been extensively studied with three objectives: (1) minimizing the length of S, (2) minimizing the time needed to compute and decode S, and (3) supporting queries efficiently. A number of coding schemes with different tradeoffs have been proposed. The adjacencylist encoding of a graph is widely useful but requires 2mdlog ne bits. (All logarithms are of base 2.) A folklore scheme uses 2n bits to encode a rooted nnode tree into a string of n pairs of balanced parentheses. Since the total number of such trees is...
Optimal Coding and Sampling of Triangulations
, 2003
"... Abstract. We present a simple encoding of plane triangulations (aka. maximal planar graphs) by plane trees with two leaves per inner node. Our encoding is a bijection taking advantage of the minimal Schnyder tree decomposition of a plane triangulation. Coding and decoding take linear time. As a bypr ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
Abstract. We present a simple encoding of plane triangulations (aka. maximal planar graphs) by plane trees with two leaves per inner node. Our encoding is a bijection taking advantage of the minimal Schnyder tree decomposition of a plane triangulation. Coding and decoding take linear time. As a byproduct we derive: (i) a simple interpretation of the formula for the number of plane triangulations with n vertices, (ii) a linear random sampling algorithm, (iii) an explicit and simple information theory optimal encoding. 1
Convex Grid Drawings of 3Connected Planar Graphs
, 1994
"... We consider the problem of embedding the vertices of a plane graph into a small (polynomial size) grid in the plane in such a way that the edges are straight, nonintersecting line segments and faces are convex polygons. We present a lineartime algorithm which, given an nvertex 3connected plane gr ..."
Abstract

Cited by 37 (7 self)
 Add to MetaCart
We consider the problem of embedding the vertices of a plane graph into a small (polynomial size) grid in the plane in such a way that the edges are straight, nonintersecting line segments and faces are convex polygons. We present a lineartime algorithm which, given an nvertex 3connected plane graph G (with n 3), finds such a straightline convex embedding of G into a (n \Gamma 2) \Theta (n \Gamma 2) grid. 1 Introduction In this paper we consider the problem of aesthetic drawing of plane graphs, that is, planar graphs that are already embedded in the plane. What is exactly an aesthetic drawing is not precisely defined and, depending on the application, different criteria have been used. In this paper we concentrate on the two following criteria: (a) edges should be represented by straightline segments, and (b) faces should be drawn as convex polygons. F'ary [6], Stein [14] and Wagner [18] showed, independently, that each planar graph can be drawn in the plane in such a way that ...
A Lineartime Algorithm for Drawing a Planar Graph on a Grid
 Information Processing Letters
, 1989
"... We present a lineartime algorithm that, given an nvertex planar graph G, finds an embedding of G into a (2n \Gamma 4) \Theta (n \Gamma 2) grid such that the edges of G are straightline segments. 1 Introduction We consider the problem of embedding the vertices of a planar graph into a small grid i ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
We present a lineartime algorithm that, given an nvertex planar graph G, finds an embedding of G into a (2n \Gamma 4) \Theta (n \Gamma 2) grid such that the edges of G are straightline segments. 1 Introduction We consider the problem of embedding the vertices of a planar graph into a small grid in the plane in such a way that the edges are straight, nonintersecting line segments. The existence of such straightline embeddings for planar graphs was independently discovered by F'ary [Fa48], Stein [St51], and Wagner [Wa36]; this result also follows from Steinitz's theorem on convex polytopes in three dimensions [SR34]. The first algorithms for constructing straightline embeddings [Tu63, CYN84, CON85] required highprecision arithmetic, and the resulting drawings were not very aesthetic, since they tend to produce uneven distributions of vertices over the drawing area. Rosenstiehl and Tarjan [RT86] noticed that it would be convenient to be able to map veritices of a planar graph into a...
Orderly Spanning Trees with Applications to Graph Encoding and Graph Drawing
 In 12 th Symposium on Discrete Algorithms (SODA
, 2001
"... The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar graph. We give a lineartime algorithm that obtains an orderly pair (H
On the Embedding Phase of the Hopcroft and Tarjan Planarity Testing Algorithm
 ALGORITHMICA
, 1994
"... We give a detailed description of the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. The embedding phase runs in linear time. An implementation based on this paper can be found in [MMN93]. ..."
Abstract

Cited by 35 (6 self)
 Add to MetaCart
We give a detailed description of the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. The embedding phase runs in linear time. An implementation based on this paper can be found in [MMN93].
Competitive Online Routing in Geometric Graphs
 Theoretical Computer Science
, 2001
"... We consider online routing algorithms for finding paths between the vertices of plane graphs. ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
We consider online routing algorithms for finding paths between the vertices of plane graphs.
Convex drawings of Planar Graphs and the Order Dimension of 3Polytopes
 ORDER
, 2000
"... We define an analogue of Schnyder's tree decompositions for 3connected planar graphs. Based on this structure we obtain: Let G be a 3connected planar graph with f faces, then G has a convex drawing with its vertices embedded on the (f 1) (f 1) grid. Let G be a 3connected planar graph. The d ..."
Abstract

Cited by 34 (14 self)
 Add to MetaCart
We define an analogue of Schnyder's tree decompositions for 3connected planar graphs. Based on this structure we obtain: Let G be a 3connected planar graph with f faces, then G has a convex drawing with its vertices embedded on the (f 1) (f 1) grid. Let G be a 3connected planar graph. The dimension of the incidence order of vertices, edges and bounded faces of G is at most 3. The second result is originally due to Brightwell and Trotter. Here we give a substantially simpler proof.