Results 1  10
of
38
Realtime logics: complexity and expressiveness
 INFORMATION AND COMPUTATION
, 1993
"... The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about realtime systems, we combine this classical theory of in nite state sequences with a theory of discrete time, via ..."
Abstract

Cited by 250 (16 self)
 Add to MetaCart
(Show Context)
The theory of the natural numbers with linear order and monadic predicates underlies propositional linear temporal logic. To study temporal logics that are suitable for reasoning about realtime systems, we combine this classical theory of in nite state sequences with a theory of discrete time, via a monotonic function that maps every state to its time. The resulting theory of timed state sequences is shown to be decidable, albeit nonelementary, and its expressive power is characterized by! regular sets. Several more expressive variants are proved to be highly undecidable. This framework allows us to classify a wide variety of realtime logics according to their complexity and expressiveness. Indeed, it follows that most formalisms proposed in the literature cannot be decided. We are, however, able to identify two elementary realtime temporal logics as expressively complete fragments of the theory of timed state sequences, and we present tableaubased decision procedures for checking validity. Consequently, these two formalisms are wellsuited for the speci cation and veri cation of realtime systems.
Logics and Models of Real Time: A Survey
"... We survey logicbased and automatabased languages and techniques for the specification and verification of realtime systems. In particular, we discuss three syntactic extensions of temporal logic: timebounded operators, freeze quantification, and time variables. We also discuss the extension of ..."
Abstract

Cited by 220 (15 self)
 Add to MetaCart
We survey logicbased and automatabased languages and techniques for the specification and verification of realtime systems. In particular, we discuss three syntactic extensions of temporal logic: timebounded operators, freeze quantification, and time variables. We also discuss the extension of finitestate machines with clocks and the extension of transition systems with time bounds on the transitions. All of the resulting notations can be interpreted over a variety of different models of time and computation, including linear and branching time, interleaving and true concurrency, discrete and continuous time. For each choice of syntax and semantics, we summarize the results that are known about expressive power, algorithmic finitestate verification, and deductive verification.
What Good Are Digital Clocks?
, 1992
"... . Realtime systems operate in "real," continuous time and state changes may occur at any realnumbered time point. Yet many verification methods are based on the assumption that states are observed at integer time points only. What can we conclude if a realtime system has been shown ..."
Abstract

Cited by 143 (14 self)
 Add to MetaCart
(Show Context)
. Realtime systems operate in "real," continuous time and state changes may occur at any realnumbered time point. Yet many verification methods are based on the assumption that states are observed at integer time points only. What can we conclude if a realtime system has been shown "correct" for integral observations? Integer time verification techniques suffice if the problem of whether all realnumbered behaviors of a system satisfy a property can be reduced to the question of whether the integral observations satisfy a (possibly modified) property. We show that this reduction is possible for a large and important class of systems and properties: the class of systems includes all systems that can be modeled as timed transition systems; the class of properties includes timebounded invariance and timebounded response. 1 Introduction Over the past few years, we have seen a proliferation of formal methodologies for software and hardware design that emphasize the treatm...
Timed Transition Systems
, 1992
"... . We incorporate time into an interleaving model of concurrency. In timed transition systems, the qualitative fairness requirements of traditional transition system are replaced (and superseded) by quantitative lowerbound and upperbound timing constraints on transitions. The purpose of this paper i ..."
Abstract

Cited by 93 (6 self)
 Add to MetaCart
. We incorporate time into an interleaving model of concurrency. In timed transition systems, the qualitative fairness requirements of traditional transition system are replaced (and superseded) by quantitative lowerbound and upperbound timing constraints on transitions. The purpose of this paper is to explore the scope of applicability for the abstract model of timed transition systems. We demonstrate that the model can represent a wide variety of phenomena that routinely occur in conjunction with the timed execution of concurrent processes. Our treatment covers both processes that are executed in parallel on separate processors and communicate either through shared variables or by message passing, and processes that timeshare a limited number of processors under a given scheduling policy. Often it is this scheduling policy that determines if a system meets its realtime requirements. Thus we explicitly address such questions as timeouts, interrupts, static and dynamic priorities. ...
On the decidability of metric temporal logic
 In Proc. LICS
, 2005
"... Metric Temporal Logic (MTL) is a prominent specification formalism for realtime systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with nonprimitive recursive complexity. We also consider the modelchecking problem for MTL: whether all w ..."
Abstract

Cited by 68 (11 self)
 Add to MetaCart
(Show Context)
Metric Temporal Logic (MTL) is a prominent specification formalism for realtime systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with nonprimitive recursive complexity. We also consider the modelchecking problem for MTL: whether all words accepted by a given AlurDill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL—which includes invariance and timebounded response properties—is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature. The question of the decidability of MTL over infinite words remains open. 1.
The octahedron abstract domain
 In Static Analysis Symposium (2004
, 2004
"... NOTICE: This is the author’s version of a work that was accepted for publication in Science of Computer Programming. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this docu ..."
Abstract

Cited by 57 (1 self)
 Add to MetaCart
(Show Context)
NOTICE: This is the author’s version of a work that was accepted for publication in Science of Computer Programming. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. A definitive version was subsequently published in Science of Computer Programming, 64(2007):115139.
Temporal Proof Methodologies for Timed Transition Systems
 INFORMATION AND COMPUTATION
, 1994
"... We extend the specification language of temporal logic, the corresponding verification framework, and the underlying computational model to deal with realtime properties of reactive systems. The abstract notion of timed transition systems generalizes traditional transition systems conservatively: ..."
Abstract

Cited by 51 (8 self)
 Add to MetaCart
We extend the specification language of temporal logic, the corresponding verification framework, and the underlying computational model to deal with realtime properties of reactive systems. The abstract notion of timed transition systems generalizes traditional transition systems conservatively: qualitative fairness requirements are replaced (and superseded) by quantitative lowerbound and upperbound timing constraints on transitions. This framework can model realtime systems that communicate either through shared variables or by message passing and realtime issues such as timeouts, process priorities (interrupts), and process scheduling. We exhibit two styles for the specification of realtime systems. While the first approach uses timebounded versions of the temporal operators, the second approach allows explicit references to time through a special clock variable. Corresponding to the two styles of specification, we present and compare two different proof methodologies for t...
On the decidability and complexity of metric temporal logic over finite words
 Logical Methods in Computer Science
, 2007
"... Abstract. Metric Temporal Logic (MTL) is a prominent specification formalism for realtime systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with nonprimitive recursive complexity. We also consider the modelchecking problem for MTL: whethe ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
(Show Context)
Abstract. Metric Temporal Logic (MTL) is a prominent specification formalism for realtime systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with nonprimitive recursive complexity. We also consider the modelchecking problem for MTL: whether all words accepted by a given AlurDill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL— which includes invariance and timebounded response properties—is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature. 1.
Formal Methods for the Specification and Design of RealTime Safety Critical Systems
, 1992
"... Safety critical computers increasingly a#ect nearly every aspect of our lives. Computers control the planes we #y on, monitor our health in hospitals and do our work in hazardous environments. Computers with software de#ciencies that fail to meet stringent timing constraints have resulted in cat ..."
Abstract

Cited by 37 (0 self)
 Add to MetaCart
(Show Context)
Safety critical computers increasingly a#ect nearly every aspect of our lives. Computers control the planes we #y on, monitor our health in hospitals and do our work in hazardous environments. Computers with software de#ciencies that fail to meet stringent timing constraints have resulted in catastrophic failures. This paper surveys formal methods for specifying, designing and verifying realtime systems, so as to improve their safety and reliability. # To appear in Journal of Systems and Software,Vol. 18, Number 1, pages 33#60, April 1992. Jonathan Ostro# is with the Department of Computer Science, York University 4700 Keele Street, North York, Ontario, Canada, M3J 1P3. This work is supported by the Natural Sciences and Engineering Research Council of Canada. 1 CONTENTS 2 Contents 1 Introduction 3 2 De#ning the terms 6 2.1 Major issues that formal theories must address ::::::: 13 3 RealTime Programming Languages 14 4 Structured Methods and#or Graphical Languages 15 4.1 Str...
The Cost of Punctuality
, 2007
"... ... Metric Interval Temporal Logic (MITL) as a fragment of the realtime logic Metric Temporal Logic (MTL) in which exact or punctual timing constraints are banned. Their main result showed that model checking and satisfiability for MITL are both EXPSPACEComplete. Until recently, it was widely beli ..."
Abstract

Cited by 25 (10 self)
 Add to MetaCart
... Metric Interval Temporal Logic (MITL) as a fragment of the realtime logic Metric Temporal Logic (MTL) in which exact or punctual timing constraints are banned. Their main result showed that model checking and satisfiability for MITL are both EXPSPACEComplete. Until recently, it was widely believed that admitting even the simplest punctual specifications in any lineartime temporal logic would automatically lead to undecidability. Although this was recently disproved, until now no punctual fragment of MTL was known to have even primitive recursive complexity (with certain decidable fragments having provably nonprimitive recursive complexity). In this paper we identify a ‘coflat ’ subset of MTL that is capable of expressing a large class of punctual specifications and for which model checking (although not satisfiability) has no complexity cost over MITL. Our logic is moreover qualitatively different from MITL in that it can express properties that are not timedregular. Correspondingly, our decision procedures do not involve translating formulas into finitestate automata, but rather into certain kinds of reversalbounded Turing machines. Using this translation we show that the model checking problem for our logic is EXPSPACEComplete