Results 1 
3 of
3
Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension
 Machine Learning
, 1994
"... In this paper we study a Bayesian or averagecase model of concept learning with a twofold goal: to provide more precise characterizations of learning curve (sample complexity) behavior that depend on properties of both the prior distribution over concepts and the sequence of instances seen by the l ..."
Abstract

Cited by 108 (12 self)
 Add to MetaCart
In this paper we study a Bayesian or averagecase model of concept learning with a twofold goal: to provide more precise characterizations of learning curve (sample complexity) behavior that depend on properties of both the prior distribution over concepts and the sequence of instances seen by the learner, and to smoothly unite in a common framework the popular statistical physics and VC dimension theories of learning curves. To achieve this, we undertake a systematic investigation and comparison of two fundamental quantities in learning and information theory: the probability of an incorrect prediction for an optimal learning algorithm, and the Shannon information gain. This study leads to a new understanding of the sample complexity of learning in several existing models. 1 Introduction Consider a simple concept learning model in which the learner attempts to infer an unknown target concept f , chosen from a known concept class F of f0; 1gvalued functions over an instance space X....
Sphere Packing Numbers for Subsets of the Boolean nCube with Bounded VapnikChervonenkis Dimension
, 1992
"... : Let V ` f0; 1g n have VapnikChervonenkis dimension d. Let M(k=n;V ) denote the cardinality of the largest W ` V such that any two distinct vectors in W differ on at least k indices. We show that M(k=n;V ) (cn=(k + d)) d for some constant c. This improves on the previous best result of ((cn ..."
Abstract

Cited by 93 (4 self)
 Add to MetaCart
: Let V ` f0; 1g n have VapnikChervonenkis dimension d. Let M(k=n;V ) denote the cardinality of the largest W ` V such that any two distinct vectors in W differ on at least k indices. We show that M(k=n;V ) (cn=(k + d)) d for some constant c. This improves on the previous best result of ((cn=k) log(n=k)) d . This new result has applications in the theory of empirical processes. 1 The author gratefully acknowledges the support of the Mathematical Sciences Research Institute at UC Berkeley and ONR grant N0001491J1162. 1 1 Statement of Results Let n be natural number greater than zero. Let V ` f0; 1g n . For a sequence of indices I = (i 1 ; . . . ; i k ), with 1 i j n, let V j I denote the projection of V onto I, i.e. V j I = f(v i 1 ; . . . ; v i k ) : (v 1 ; . . . ; v n ) 2 V g: If V j I = f0; 1g k then we say that V shatters the index sequence I. The VapnikChervonenkis dimension of V is the size of the longest index sequence I that is shattered by V [VC71] (t...
Learning Using Information Theory and the VC Dimension
"... Abstract. In this paper we study a Bayesian or averagecase model of concept learning with a twofold goal: to provide more precise characterizations of learning curve (sample complexity) behavior that depend on properties of both the prior distribution over concepts and the sequence of instances see ..."
Abstract
 Add to MetaCart
Abstract. In this paper we study a Bayesian or averagecase model of concept learning with a twofold goal: to provide more precise characterizations of learning curve (sample complexity) behavior that depend on properties of both the prior distribution over concepts and the sequence of instances seen by the learner, and to smoothly unite in a common framework the popular statistical physics and VC dimension theories of learning curves. To achieve this, we undertake a systematic investigation and comparison of two fundamental quantities in learning and information theory: the probability of an incorrect prediction for an optimal learning algorithm, and the Shannon information gain. This study leads to a new understanding of the sample complexity of learning in several existing models.