Results 1 
1 of
1
An Algorithm for Clustering cDNAs for Gene Expression Analysis
 In RECOMB99: Proceedings of the Third Annual International Conference on Computational Molecular Biology
, 1999
"... We have developed a novel algorithm for cluster analysis that is based on graph theoretic techniques. A similarity graph is defined and clusters in that graph correspond to highly connected subgraphs. A polynomial algorithm to compute them efficiently is presented. Our algorithm produces a clusterin ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
(Show Context)
We have developed a novel algorithm for cluster analysis that is based on graph theoretic techniques. A similarity graph is defined and clusters in that graph correspond to highly connected subgraphs. A polynomial algorithm to compute them efficiently is presented. Our algorithm produces a clustering with some provably good properties. The application that motivated this study was gene expression analysis, where a collection of cDNAs must be clustered based on their oligonucleotide fingerprints. The algorithm has been tested intensively on simulated libraries and was shown to outperform extant methods. It demonstrated robustness to high noise levels. In a blind test on real cDNA fingerprint data the algorithm obtained very good results. Utilizing the results of the algorithm would have saved over 70% of the cDNA sequencing cost on that data set. 1 Introduction Cluster analysis seeks grouping of data elements into subsets, so that elements in the same subset are in some sense more cl...