Results 1  10
of
32
A New Approach to Abstract Syntax Involving Binders
 In 14th Annual Symposium on Logic in Computer Science
, 1999
"... Syntax Involving Binders Murdoch Gabbay Cambridge University DPMMS Cambridge CB2 1SB, UK M.J.Gabbay@cantab.com Andrew Pitts Cambridge University Computer Laboratory Cambridge CB2 3QG, UK ap@cl.cam.ac.uk Abstract The FraenkelMostowski permutation model of set theory with atoms (FMsets) ..."
Abstract

Cited by 146 (14 self)
 Add to MetaCart
Syntax Involving Binders Murdoch Gabbay Cambridge University DPMMS Cambridge CB2 1SB, UK M.J.Gabbay@cantab.com Andrew Pitts Cambridge University Computer Laboratory Cambridge CB2 3QG, UK ap@cl.cam.ac.uk Abstract The FraenkelMostowski permutation model of set theory with atoms (FMsets) can serve as the semantic basis of metalogics for specifying and reasoning about formal systems involving name binding, ffconversion, capture avoiding substitution, and so on. We show that in FMset theory one can express statements quantifying over `fresh' names and we use this to give a novel settheoretic interpretation of name abstraction. Inductively defined FMsets involving this nameabstraction set former (together with cartesian product and disjoint union) can correctly encode objectlevel syntax modulo ffconversion. In this way, the standard theory of algebraic data types can be extended to encompass signatures involving binding operators. In particular, there is an associated n...
A Presheaf Semantics of ValuePassing Processes
, 1996
"... This paper investigates presheaf models for process calculi with value passing. Denotational semantics in presheaf models are shown to correspond to operational semantics in that bisimulation obtained from open maps is proved to coincide with bisimulation as defined traditionally from the operat ..."
Abstract

Cited by 33 (18 self)
 Add to MetaCart
This paper investigates presheaf models for process calculi with value passing. Denotational semantics in presheaf models are shown to correspond to operational semantics in that bisimulation obtained from open maps is proved to coincide with bisimulation as defined traditionally from the operational semantics. Both "early" and "late" semantics are considered, though the more interesting "late" semantics is emphasised. A presheaf model and denotational semantics is proposed for a language allowing process passing, though there remains the problem of relating the notion of bisimulation obtained from open maps to a more traditional definition from the operational semantics.
A Cook’s tour of the finitary nonwellfounded sets
 Invited Lecture at BCTCS
, 1988
"... It is a great pleasure to contribute this paper to a birthday volume for Dov. Dov and I arrived at imperial College at around the same time, and soon he, Tom Maibaum and I were embarked on a joint project, the Handbook of Logic in Computer Science. We obtained a generous advance from Oxford Universi ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
It is a great pleasure to contribute this paper to a birthday volume for Dov. Dov and I arrived at imperial College at around the same time, and soon he, Tom Maibaum and I were embarked on a joint project, the Handbook of Logic in Computer Science. We obtained a generous advance from Oxford University Press, and a grant from the Alvey Programme, which allowed us to develop the Handbook in a rather unique, interactive way. We held regular meetings at Cosener’s House in Abingdon (a facility run by what was then the U.K. Science and Engineering Research Council), at which contributors would present their ideas and draft material for their chapters for discussion and criticism. Ideas for new chapters and the balance of the volumes were also discussed. Those were a remarkable series of meetings — a veritable education in themselves. I must confess that during this long process, I did occasionally wonder if it would ever terminate.... But the record shows that five handsome volumes were produced [6]. Moreover, I believe that the Handbook has proved to be a really valuable resource for students and researchers. It has been used as the basis for a number of summer schools. Many of the chapters have become standard references for their topics. In a field with rapidly changing fashions, most of the material has stood the test of time — thus
A Uniform Approach to Domain Theory in Realizability Models
 Mathematical Structures in Computer Science
, 1996
"... this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability" categories of assemblies an ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability" categories of assemblies and modest sets. Next, in Section 4, we prepare for our development of domain theory with an analysis of nontermination. Previous approaches have used (relatively complicated) categorical formulations of partial maps for this purpose. Instead, motivated by the idea that A provides a primitive programming language, we consider a simple notion of "diverging" computation within A itself. This leads to a theory of divergences from which a notion of (computable) partial function is derived together with a lift monad classifying partial functions. The next task is to isolate a subcategory of modest sets with sufficient structure for supporting analogues of the usual domaintheoretic constructions. First, we expect to be able to interpret the standard constructions of total type theory in this category, so it should inherit cartesianclosure, coproducts and the natural numbers from modest sets. Second, it should interact well with the notion of partiality, so it should be closed under application of the lift functor. Third, it should allow the recursive definition of partial functions. This is achieved by obtaining a fixpoint object in the category, as defined in (Crole and Pitts 1992). Finally, although there is in principle no definitive list of requirements on such a category, one would like it to support more complicated constructions such as those required to interpret polymorphic and recursive types. The central part of the paper (Sections 5, 6, 7 and 9) is devoted to establish...
Presheaf models of constructive set theories
, 2004
"... Abstract. We introduce a new kind of models for constructive set theories based on categories of presheaves. These models are a counterpart of the presheaf models for intuitionistic set theories defined by Dana Scott in the ’80s. We also show how presheaf models fit into the framework of Algebraic S ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
Abstract. We introduce a new kind of models for constructive set theories based on categories of presheaves. These models are a counterpart of the presheaf models for intuitionistic set theories defined by Dana Scott in the ’80s. We also show how presheaf models fit into the framework of Algebraic Set Theory and sketch an application to an independence result. 1. Variable sets in foundations and practice Presheaves are of central importance both for the foundations and the practice of mathematics. The notion of a presheaf formalizes well the idea of a variable set, that is relevant in all the areas of mathematics concerned with the study of indexed families of objects [19]. One may then readily see how presheaves are of interest also in foundations: both Cohen’s forcing models for classical set theories and Kripke models for intuitionistic logic involve the idea of sets indexed by stages. Constructive aspects start to emerge when one considers the internal logic of categories of presheaves. This logic, which does not include classical principles such as the law of the excluded middle, provides a useful language to manipulate objects
BernaysGödel typetheory
 Journal of Pure and Applied Algebra
, 2003
"... . There is a close relationship between category theory and logic. For example, elementary toposes have just enough properties to interpret intuitionistic higherorder logic, and we think of toposes as `categories of sets'. In fact, a topos with a natural numbers object is an adequate universe in ..."
Abstract

Cited by 17 (3 self)
 Add to MetaCart
. There is a close relationship between category theory and logic. For example, elementary toposes have just enough properties to interpret intuitionistic higherorder logic, and we think of toposes as `categories of sets'. In fact, a topos with a natural numbers object is an adequate universe in which to develop intuitionistic mathematics, and such a topos may be seen as a categorical analogue of a model of intuitionistic ZermeloFraenkel settheory. In this paper we implement the categorical analogue of BernaysGodel settheory. We introduce the notion of small structure on a category, and if small structure satises certain axioms we can think of the underlying category as a category of classes. Our axioms imply the existence of a covariant powerset monad on the underlying category of classes, which sends a class to the class of its small subclasses. Simple xed points of this and related monads are shown to be models of intuitionistic ZermeloFraenkel settheory (IZF). ...
Algebraic models of intuitionistic theories of sets and classes. Theory and applications of categories
"... Abstract. This paper constructs models of intuitionistic set theory in suitable categories. First, a Basic Intuitionistic Set Theory (BIST) is stated, and the categorical semantics are given. Second, we give a notion of an ideal over a category, using which one can build a model of BIST in which a g ..."
Abstract

Cited by 13 (7 self)
 Add to MetaCart
Abstract. This paper constructs models of intuitionistic set theory in suitable categories. First, a Basic Intuitionistic Set Theory (BIST) is stated, and the categorical semantics are given. Second, we give a notion of an ideal over a category, using which one can build a model of BIST in which a given topos occurs as the sets. And third, a sheaf model is given of a Basic Intuitionistic Class Theory conservatively extending BIST. The paper extends the results in [2] by introducing a new and perhaps more natural notion of ideal, and in the class theory of part three. 1.
Does category theory provide a framework for mathematical structuralism?
 PHILOSOPHIA MATHEMATICA
, 2003
"... Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis à vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis à vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves. We propose a synthesis of Bell’s “manytopoi” view and modalstructuralism. Surprisingly, a combination of mereology and plural quantification suffices to describe hypothetical large domains, recovering the Grothendieck method of universes. Both topos theory and set theory can be carried out relative to such domains; puzzles about “large categories ” and “proper classes ” are handled in a
Computational Adequacy in an Elementary Topos
 Proceedings CSL ’98, Springer LNCS 1584
, 1999
"... . We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises whe ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
. We place simple axioms on an elementary topos which suffice for it to provide a denotational model of callbyvalue PCF with sum and product types. The model is synthetic in the sense that types are interpreted by their settheoretic counterparts within the topos. The main result characterises when the model is computationally adequate with respect to the operational semantics of the programming language. We prove that computational adequacy holds if and only if the topos is 1consistent (i.e. its internal logic validates only true \Sigma 0 1 sentences). 1 Introduction One axiomatic approach to domain theory is based on axiomatizing properties of the category of predomains (in which objects need not have a "least" element). Typically, such a category is assumed to be bicartesian closed (although it is not really necessary to require all exponentials) with natural numbers object, allowing the denotations of simple datatypes to be determined by universal properties. It is well known...