Results 1  10
of
53
General recursion via coinductive types
 Logical Methods in Computer Science
"... Vol. 1 (2:1) 2005, pp. 1–28 ..."
(Show Context)
Automated Termination Analysis for Haskell: From Term Rewriting to Programming Languages
 In Proc. RTA ’06, LNCS
, 2006
"... Abstract. There are many powerful techniques for automated termination analysis of term rewriting. However, up to now they have hardly been used for real programming languages. We present a new approach which permits the application of existing techniques from term rewriting in order to prove termin ..."
Abstract

Cited by 40 (12 self)
 Add to MetaCart
Abstract. There are many powerful techniques for automated termination analysis of term rewriting. However, up to now they have hardly been used for real programming languages. We present a new approach which permits the application of existing techniques from term rewriting in order to prove termination of programs in the functional language Haskell. In particular, we show how termination techniques for ordinary rewriting can be used to handle those features of Haskell which are missing in term rewriting (e.g., lazy evaluation, polymorphic types, and higherorder functions). We implemented our results in the termination prover AProVE and successfully evaluated them on existing Haskelllibraries. 1
Induction and coinduction in sequent calculus
 Postproceedings of TYPES 2003, number 3085 in LNCS
, 2003
"... Abstract. Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and coinduction. These proof principles are based on a proof theoretic (rather than sett ..."
Abstract

Cited by 28 (8 self)
 Add to MetaCart
(Show Context)
Abstract. Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and coinduction. These proof principles are based on a proof theoretic (rather than settheoretic) notion of definition [13, 20, 25, 51]. Definitions are akin to (stratified) logic programs, where the left and right rules for defined atoms allow one to view theories as “closed ” or defining fixed points. The use of definitions makes it possible to reason intensionally about syntax, in particular enforcing free equality via unification. We add in a consistent way rules for pre and post fixed points, thus allowing the user to reason inductively and coinductively about properties of computational system making full use of higherorder abstract syntax. Consistency is guaranteed via cutelimination, where we give the first, to our knowledge, cutelimination procedure in the presence of general inductive and coinductive definitions. 1
The Computability Path Ordering: the End of a Quest
"... Abstract. In this paper, we first briefly survey automated termination proof methods for higherorder calculi. We then concentrate on the higherorder recursive path ordering, for which we provide an improved definition, the Computability Path Ordering. This new definition appears indeed to capture ..."
Abstract

Cited by 22 (2 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper, we first briefly survey automated termination proof methods for higherorder calculi. We then concentrate on the higherorder recursive path ordering, for which we provide an improved definition, the Computability Path Ordering. This new definition appears indeed to capture the essence of computability arguments à la Tait and Girard, therefore explaining the name of the improved ordering. 1
A Unifying Approach to Recursive and Corecursive Definitions
 IN [5
, 2002
"... In type theory based logical frameworks, recursive and corecursive definitions are subject to syntactic restrictions that ensure their termination and productivity. These restrictions however greately decrease the expressive power of the language. In this work we propose a general approach for s ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
(Show Context)
In type theory based logical frameworks, recursive and corecursive definitions are subject to syntactic restrictions that ensure their termination and productivity. These restrictions however greately decrease the expressive power of the language. In this work we propose a general approach for systematically defining fixed points for a broad class of well given recursive definition. This approach unifies the ones based on wellfounded order to the ones based on complete metrics and contractive functions, thus allowing for mixed recursive/corecursive definitions.
A.: Copatterns: Programming infinite structures by observations
, 2013
"... Abel, A., Pientka, B., Thibodeau, D. & Setzer, A. (2013). Copatterns: programming infinite structures by observations. ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
Abel, A., Pientka, B., Thibodeau, D. & Setzer, A. (2013). Copatterns: programming infinite structures by observations.
Wellfounded Recursion with Copatterns A Unified Approach to Termination and Productivity
, 2013
"... In this paper, we study strong normalization of a core language based on System Fomega which supports programming with finite and infinite structures. Building on our prior work, finite data such as finite lists and trees are defined via constructors and manipulated via pattern matching, while infi ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
In this paper, we study strong normalization of a core language based on System Fomega which supports programming with finite and infinite structures. Building on our prior work, finite data such as finite lists and trees are defined via constructors and manipulated via pattern matching, while infinite data such as streams and infinite trees is defined by observations and synthesized via copattern matching. In this work, we take a typebased approach to strong normalization by tracking size information about finite and infinite data in the type. This guarantees compositionality. More importantly, the duality of pattern and copatterns provide a unifying semantic concept which allows us for the first time to elegantly and uniformly support both wellfounded induction and coinduction by mere rewriting. The strong normalization proof is structured around Girard’s reducibility candidates. As such our system allows for nondeterminism and does not rely on coverage. Since System Fomega is general enough that it can be the target of compilation for the Calculus of Constructions, this work is a significant step towards representing observationcentric infinite data in proof assistants such as Coq and Agda.
Inductive and coinductive components of corecursive functions
 in Coq. ENTSC 203
, 2008
"... ar ..."
(Show Context)
Implementing a Normalizer Using Sized Heterogeneous Types
 Journal of Functional Programming, MSFP’06 special issue
"... In the simplytyped lambdacalculus, a hereditary substitution replaces a free variable in a normal form r by another normal form s of type a, removing freshly created redexes on the fly. It can be defined by lexicographic induction on a and r, thus, giving rise to a structurally recursive normalize ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
(Show Context)
In the simplytyped lambdacalculus, a hereditary substitution replaces a free variable in a normal form r by another normal form s of type a, removing freshly created redexes on the fly. It can be defined by lexicographic induction on a and r, thus, giving rise to a structurally recursive normalizer for the simplytyped lambdacalculus. We generalize this scheme to simultaneous substitutions, preserving its simple termination argument. We further implement hereditary simultaneous substitutions in a functional programming language with sized heterogeneous inductive types, Fωb, arriving at an interpreter whose termination can be tracked by the type system of its host programming language.
The Power of Parameterization in Coinductive Proof
"... Coinduction is one of the most basic concepts in computer science. It is therefore surprising that the commonlyknown latticetheoretic accounts of the principles underlying coinductive proofs are lacking in two key respects: they do not support compositional reasoning (i.e., breaking proofs into se ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
(Show Context)
Coinduction is one of the most basic concepts in computer science. It is therefore surprising that the commonlyknown latticetheoretic accounts of the principles underlying coinductive proofs are lacking in two key respects: they do not support compositional reasoning (i.e., breaking proofs into separate pieces that can be developed in isolation), and they do not support incremental reasoning (i.e., developing proofs interactively by starting from the goal and generalizing the coinduction hypothesis repeatedly as necessary). In this paper, we show how to support coinductive proofs that are both compositional and incremental, using a dead simple construction we call the parameterized greatest fixed point. The basic idea is to parameterize the greatest fixed point of interest over the accumulated knowledge of “the proof so far”. While this idea has been proposed before, by Winskel in 1989 and by Moss in 2001, neither of the previous accounts suggests its general applicability to improving the state of the art in interactive coinductive proof. In addition to presenting the latticetheoretic foundations of parameterized coinduction, demonstrating its utility on representative examples, and studying its composition with “upto ” techniques, we also explore its mechanization in proof assistants like Coq and Isabelle. Unlike traditional approaches to mechanizing coinduction (e.g., Coq’s cofix), which employ syntactic “guardedness checking”, parameterized coinduction offers a semantic account of guardedness. This leads to faster and more robust proof development, as we demonstrate using our new Coq library, Paco.