Results 1  10
of
51
A Theory Of Inferred Causation
, 1991
"... This paper concerns the empirical basis of causation, and addresses the following issues: 1. the clues that might prompt people to perceive causal relationships in uncontrolled observations. 2. the task of inferring causal models from these clues, and 3. whether the models inferred tell us anything ..."
Abstract

Cited by 208 (34 self)
 Add to MetaCart
This paper concerns the empirical basis of causation, and addresses the following issues: 1. the clues that might prompt people to perceive causal relationships in uncontrolled observations. 2. the task of inferring causal models from these clues, and 3. whether the models inferred tell us anything useful about the causal mechanisms that underly the observations. We propose a minimalmodel semantics of causation, and show that, contrary to common folklore, genuine causal influences can be distinguished from spurious covariations following standard norms of inductive reasoning. We also establish a sound characterization of the conditions under which such a distinction is possible. We provide an effective algorithm for inferred causation and show that, for a large class of data the algorithm can uncover the direction of causal influences as defined above. Finally, we address the issue of nontemporal causation. 1 Introduction The study of causation is central to the understanding of hum...
Axioms of Causal Relevance
 Artificial Intelligence
, 1996
"... This paper develops axioms and formal semantics for statements of the form "X is causally irrelevant to Y in context Z," which we interpret to mean "Changing X will not affect Y if we hold Z constant." The axiomization of causal irrelevance is contrasted with the axiomization of informational irr ..."
Abstract

Cited by 54 (15 self)
 Add to MetaCart
This paper develops axioms and formal semantics for statements of the form "X is causally irrelevant to Y in context Z," which we interpret to mean "Changing X will not affect Y if we hold Z constant." The axiomization of causal irrelevance is contrasted with the axiomization of informational irrelevance, as in "Learning X will not alter our belief in Y , once we know Z." Two versions of causal irrelevance are analyzed, probabilistic and deterministic. We show that, unless stability is assumed, the probabilistic definition yields a very loose structure, that is governed by just two trivial axioms. Under the stability assumption, probabilistic causal irrelevance is isomorphic to path interception in cyclic graphs. Under the deterministic definition, causal irrelevance complies with all of the axioms of path interception in cyclic graphs, with the exception of transitivity. We compare our formalism to that of [Lewis, 1973], and offer a graphical method of proving theorems abou...
Reasoning With Cause And Effect
, 1999
"... This paper summarizes basic concepts and principles that I have found to be useful in dealing with causal reasoning. The paper is written as a companion to a lecture under the same title, to be presented at IJCAI99, and is intended to supplement the lecture with technical details and pointers to mo ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
This paper summarizes basic concepts and principles that I have found to be useful in dealing with causal reasoning. The paper is written as a companion to a lecture under the same title, to be presented at IJCAI99, and is intended to supplement the lecture with technical details and pointers to more elaborate discussions in the literature. The ruling conception will be to treat causation as a computational schema devised to identify the invariant relationships in the environment, so as to facilitate reliable prediction of the effect of actions. This conception, as well as several of its satellite principles and tools, has been guiding paradigm for several research communities in AI, most notably those connected with causal discovery, troubleshooting, planning under uncertainty and modeling the behavior of physical systems. My hopes are to encourage a broader and more effective usage of causal modeling by explicating these common principles in simple and familiar mathematical form. Af...
Causal inference in statistics: An Overview
, 2009
"... This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all ca ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called “causal effects ” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret, ” “attribution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potentialoutcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
Beyond covariation: Cues to causal structure
 In A. Gopnik & L. Schulz (Eds.), Causal learning: Psychology, philosophy, and computation
, 2006
"... computation. In preparation. Address for correspondence: ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
computation. In preparation. Address for correspondence:
Statistics and Causal Inference: A Review
, 2003
"... This paper aims at assisting empirical researchers benefit from recent advances in causal inference. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assump ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
This paper aims at assisting empirical researchers benefit from recent advances in causal inference. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, and the conditional nature of causal claims inferred from nonexperimental studies. These emphases are illustrated through a brief survey of recent results, including the control of confounding, the assessment of causal effects, the interpretation of counterfactuals, and a symbiosis between counterfactual and graphical methods of analysis.
Probabilities of causation: Three counterfactual interpretations and their identification
 SYNTHESE
, 1999
"... According to common judicial standard, judgment in favor of plaintiff should be made if and only if it is "more probable than not" that the defendant's action was the cause for the plaintiff's damage (or death). This paper provides formal semantics, based on structural models of counterfactuals, ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
According to common judicial standard, judgment in favor of plaintiff should be made if and only if it is "more probable than not" that the defendant's action was the cause for the plaintiff's damage (or death). This paper provides formal semantics, based on structural models of counterfactuals, for the probability that event x was a necessary or sufficient cause (or both) of another event y. The paper then explicates conditions under which the probability of necessary (or sufficient) causation can be learned from statistical data, and shows how data from both experimental and nonexperimental studies can be combined to yield information that neither study alone can provide. Finally,weshow that necessity and sufficiency are two independent aspects of causation, and that both should be invoked in the construction of causal explanations for specific scenarios.
Simulating Causal Models: The Way to Structural Sensitivity
 In
, 2000
"... The majority of psychological studies on causality have focused on simple causeeffect relations. Little is known about how people approach more realistic, complex causal networks. Two experiments are presented that investigate how participants integrate causal knowledge that was acquired in se ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
The majority of psychological studies on causality have focused on simple causeeffect relations. Little is known about how people approach more realistic, complex causal networks. Two experiments are presented that investigate how participants integrate causal knowledge that was acquired in separate learning tasks into a coherent causal model. To accomplish this task it is necessary to bring to bear knowledge about the structural implications of causal models. For example, whereas commoncause models imply a covariation among the different effects of a common cause, no such covariation between the different causes of a joint effect is implied by a commoneffect model. The experiments show that participants have virtually no explicit knowledge of these relations, and therefore tend to misrepresent the structural implications of causal models in their explicit judgments. However, an implicit task that only required predictions of singular events showed surprisingly accurate sensitivity to the structural implications of causal models. This dissociation supports the view that people's sensitivity to structural implications is mediated by running simulations on mental analogs of the causal situations.