Results 11  20
of
156
Optimization by learning and simulation of Bayesian and Gaussian networks
, 1999
"... Estimation of Distribution Algorithms (EDA) constitute an example of stochastics heuristics based on populations of individuals every of which encode the possible solutions to the optimization problem. These populations of individuals evolve in succesive generations as the search progresses  organ ..."
Abstract

Cited by 43 (6 self)
 Add to MetaCart
Estimation of Distribution Algorithms (EDA) constitute an example of stochastics heuristics based on populations of individuals every of which encode the possible solutions to the optimization problem. These populations of individuals evolve in succesive generations as the search progresses  organized in the same way as most evolutionary computation heuristics. In opposition to most evolutionary computation paradigms which consider the crossing and mutation operators as essential tools to generate new populations, EDA replaces those operators by the estimation and simulation of the joint probability distribution of the selected individuals. In this work, after making a review of the different approaches based on EDA for problems of combinatorial optimization as well as for problems of optimization in continuous domains, we propose new approaches based on the theory of probabilistic graphical models to solve problems in both domains. More precisely, we propose to adapt algorit...
Feature Subset Selection by Bayesian networks: a comparison with genetic and sequential algorithms
"... In this paper we perform a comparison among FSSEBNA, a randomized, populationbased and evolutionary algorithm, and two genetic and other two sequential search approaches in the well known Feature Subset Selection (FSS) problem. In FSSEBNA, the FSS problem, stated as a search problem, uses the E ..."
Abstract

Cited by 42 (15 self)
 Add to MetaCart
In this paper we perform a comparison among FSSEBNA, a randomized, populationbased and evolutionary algorithm, and two genetic and other two sequential search approaches in the well known Feature Subset Selection (FSS) problem. In FSSEBNA, the FSS problem, stated as a search problem, uses the EBNA (Estimation of Bayesian Network Algorithm) search engine, an algorithm within the EDA (Estimation of Distribution Algorithm) approach. The EDA paradigm is born from the roots of the GA community in order to explicitly discover the relationships among the features of the problem and not disrupt them by genetic recombination operators. The EDA paradigm avoids the use of recombination operators and it guarantees the evolution of the population of solutions and the discovery of these relationships by the factorization of the probability distribution of best individuals in each generation of the search. In EBNA, this factorization is carried out by a Bayesian network induced by a chea...
Learning Probabilistic Networks
 THE KNOWLEDGE ENGINEERING REVIEW
, 1998
"... A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combini ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combining prior knowledge, which might be limited solely to experience of the influences between some of the variables of interest, and data. In this paper, we first show how data can be used to revise initial estimates of the parameters of a model. We then progress to showing how the structure of the model can be revised as data is obtained. Techniques for learning with incomplete data are also covered.
Markov properties for acyclic directed mixed graphs
 Scandinavian Journal of Statistics
, 2003
"... We consider acyclic directed mixed graphs, in which directed edges (x → y) and bidirected edges (x ↔ y) may occur. A simple extension of Pearl’s dseparation criterion, called mseparation, is applied to these graphs. We introduce a local Markov property which is equivalent to the global property r ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
We consider acyclic directed mixed graphs, in which directed edges (x → y) and bidirected edges (x ↔ y) may occur. A simple extension of Pearl’s dseparation criterion, called mseparation, is applied to these graphs. We introduce a local Markov property which is equivalent to the global property resulting from the mseparation criterion.
Identification of joint interventional distributions in recursive semimarkovian causal models
"... This paper is concerned with estimating the effects of actions from causal assumptions, represented concisely as a directed graph, and statistical knowledge, given as a probability distribution. We provide a necessary and sufficient graphical condition for the cases when the causal effect of an arbi ..."
Abstract

Cited by 36 (13 self)
 Add to MetaCart
This paper is concerned with estimating the effects of actions from causal assumptions, represented concisely as a directed graph, and statistical knowledge, given as a probability distribution. We provide a necessary and sufficient graphical condition for the cases when the causal effect of an arbitrary set of variables on another arbitrary set can be determined uniquely from the available information, as well as an algorithm which computes the effect whenever this condition holds. Furthermore, we use our results to prove completeness of docalculus [Pearl, 1995], and a version of an identification algorithm in [Tian, 2002] for the same identification problem. Finally, we derive a complete characterization of semiMarkovian models in which all causal effects are identifiable.
The Multiinformation Function As A Tool For Measuring Stochastic Dependence
 Learning in Graphical Models
, 1998
"... . Given a collection of random variables [¸ i ] i2N where N is a finite nonempty set, the corresponding multiinformation function ascribes the relative entropy of the joint distribution of [¸ i ] i2A with respect to the product of distributions of individual random variables ¸ i for i 2 A to every s ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
. Given a collection of random variables [¸ i ] i2N where N is a finite nonempty set, the corresponding multiinformation function ascribes the relative entropy of the joint distribution of [¸ i ] i2A with respect to the product of distributions of individual random variables ¸ i for i 2 A to every subset A ae N . We argue it is a useful tool for problems concerning stochastic (conditional) dependence and independence (at least in discrete case). First, it makes possible to express the conditional mutual information between [¸ i ] i2A and [¸ i ] i2B given [¸ i ] i2C (for every disjoint A; B; C ae N) which can be considered as a good measure of conditional stochastic dependence. Second, one can introduce reasonable measures of dependence of level r among variables [¸ i ] i2A (where A ae N , 1 r ! card A) which are expressible by means of the multiinformation function. Third, it enables one to derive theoretical results on (nonexistence of an) axiomatic characterization of stochastic c...
Identification, inference, and sensitivity analysis for causal mediation effects
, 2008
"... Abstract. Causal mediation analysis is routinely conducted by applied researchers in a variety of disciplines. The goal of such an analysis is to investigate alternative causal mechanisms by examining the roles of intermediate variables that lie in the causal paths between the treatment and outcome ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
Abstract. Causal mediation analysis is routinely conducted by applied researchers in a variety of disciplines. The goal of such an analysis is to investigate alternative causal mechanisms by examining the roles of intermediate variables that lie in the causal paths between the treatment and outcome variables. In this paper we first prove that under a particular version of sequential ignorability assumption, the average causal mediation effect (ACME) is nonparametrically identified. We compare our identification assumption with those proposed in the literature. Some practical implications of our identification result are also discussed. In particular, the popular estimator based on the linear structural equation model (LSEM) can be interpreted as an ACME estimator once additional parametric assumptions are made. We show that these assumptions can easily be relaxed within and outside of the LSEM framework and propose simple nonparametric estimation strategies. Second, and perhaps most importantly, we propose a new sensitivity analysis that can be easily implemented by applied researchers within the LSEM framework. Like the existing identifying assumptions, the proposed sequential ignorability assumption may be too strong in many applied settings. Thus, sensitivity analysis is essential in order to examine the robustness of empirical findings to the possible existence of an unmeasured confounder. Finally, we apply the proposed methods to a randomized experiment from political psychology. We also make easytouse software available to implement the proposed methods. Key words and phrases: Causal inference, causal mediation analysis, direct and indirect effects, linear structural equation models, sequential ignorability, unmeasured confounders. 1.
Synergy, Redundancy, and Independence in Population Codes
 The Journal of Neuroscience
, 2003
"... A key issue in understanding the neural code for an ensemble of neurons is the nature and strength of correlations between neurons and how these correlations are related to the stimulus. The issue is complicated by the fact that there is not a single notion of independence or lack of correlation. We ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
A key issue in understanding the neural code for an ensemble of neurons is the nature and strength of correlations between neurons and how these correlations are related to the stimulus. The issue is complicated by the fact that there is not a single notion of independence or lack of correlation. We distinguish three kinds: (1) activity independence; (2) conditional independence; and (3) information independence. Each notion is related to an information measure: the information between cells, the information between cells given the stimulus, and the synergy of cells about the stimulus, respectively. We show that these measures form an interrelated framework for evaluating contributions of signal and noise correlations to the joint information conveyed about the stimulus and that at least two of the three measures must be calculated to characterize a population code. This framework is compared with others recently proposed in the literature. In addition, we distinguish questions about how information is encoded by a population of neurons from how that information can be decoded. Although information theory is natural and powerful for questions of encoding, it is not sufficient for characterizing the process of decoding. Decoding fundamentally requires an error measure that quantifies the importance of the deviations of estimated stimuli from actual stimuli. Because there is no a priori choice of error measure, questions about decoding cannot be put on the same level of generality as for encoding.
Building probabilistic networks: where do the numbers come from?  a guide to the literature
 IEEE Transactions on Knowledge and Data Engineering
, 2000
"... Probabilistic networks are now fairly well established as practical representations of knowledge for reasoning under uncertainty, as demonstrated by an increasing number of successful applications in such domains as (medical) diagnosis and prognosis, planning, vision, ..."
Abstract

Cited by 29 (3 self)
 Add to MetaCart
Probabilistic networks are now fairly well established as practical representations of knowledge for reasoning under uncertainty, as demonstrated by an increasing number of successful applications in such domains as (medical) diagnosis and prognosis, planning, vision,