Results 1  10
of
134
Kernels and Regularization on Graphs
, 2003
"... We introduce a family of kernels on graphs based on the notion of regularization operators. This generalizes in a natural way the notion of regularization and Greens functions, as commonly used for real valued functions, to graphs. It turns out that di#usion kernels can be found as a special cas ..."
Abstract

Cited by 178 (9 self)
 Add to MetaCart
We introduce a family of kernels on graphs based on the notion of regularization operators. This generalizes in a natural way the notion of regularization and Greens functions, as commonly used for real valued functions, to graphs. It turns out that di#usion kernels can be found as a special case of our reasoning. We show that the class of positive, monotonically decreasing functions on the unit interval leads to kernels and corresponding regularization operators.
SemiSupervised Classification by Low Density Separation
, 2005
"... We believe that the cluster assumption is key to successful semisupervised learning. Based on this, we propose three semisupervised algorithms: 1. deriving graphbased distances that emphazise low density regions between clusters, followed by training a standard SVM; 2. optimizing the Transd ..."
Abstract

Cited by 127 (9 self)
 Add to MetaCart
We believe that the cluster assumption is key to successful semisupervised learning. Based on this, we propose three semisupervised algorithms: 1. deriving graphbased distances that emphazise low density regions between clusters, followed by training a standard SVM; 2. optimizing the Transductive SVM objective function, which places the decision boundary in low density regions, by gradient descent; 3. combining the first two to make maximum use of the cluster assumption. We compare with state of the art algorithms and demonstrate superior accuracy for the latter two methods.
Randomwalk computation of similarities between nodes of a graph, with application to collaborative recommendation
 IEEE Transactions on Knowledge and Data Engineering
, 2006
"... Abstract—This work presents a new perspective on characterizing the similarity between elements of a database or, more generally, nodes of a weighted and undirected graph. It is based on a Markovchain model of random walk through the database. More precisely, we compute quantities (the average comm ..."
Abstract

Cited by 122 (18 self)
 Add to MetaCart
Abstract—This work presents a new perspective on characterizing the similarity between elements of a database or, more generally, nodes of a weighted and undirected graph. It is based on a Markovchain model of random walk through the database. More precisely, we compute quantities (the average commute time, the pseudoinverse of the Laplacian matrix of the graph, etc.) that provide similarities between any pair of nodes, having the nice property of increasing when the number of paths connecting those elements increases and when the “length ” of paths decreases. It turns out that the square root of the average commute time is a Euclidean distance and that the pseudoinverse of the Laplacian matrix is a kernel matrix (its elements are inner products closely related to commute times). A principal component analysis (PCA) of the graph is introduced for computing the subspace projection of the node vectors in a manner that preserves as much variance as possible in terms of the Euclidean commutetime distance. This graph PCA provides a nice interpretation to the “Fiedler vector, ” widely used for graph partitioning. The model is evaluated on a collaborativerecommendation task where suggestions are made about which movies people should watch based upon what they watched in the past. Experimental results on the MovieLens database show that the Laplacianbased similarities perform well in comparison with other methods. The model, which nicely fits into the socalled “statistical relational learning ” framework, could also be used to compute document or word similarities, and, more generally, it could be applied to machinelearning and patternrecognition tasks involving a relational database. Index Terms—Graph analysis, graph and database mining, collaborative recommendation, graph kernels, spectral clustering, Fiedler vector, proximity measures, statistical relational learning. 1
A Kernel View Of The Dimensionality Reduction Of Manifolds
, 2003
"... We interpret several wellknown algorithms for dimensionality reduction of manifolds as kernel methods. Isomap, graph Laplacian eigenmap, and locally linear embedding (LLE) all utilize local neighborhood information to construct a global embedding of the manifold. We show how all three algorithm ..."
Abstract

Cited by 113 (7 self)
 Add to MetaCart
We interpret several wellknown algorithms for dimensionality reduction of manifolds as kernel methods. Isomap, graph Laplacian eigenmap, and locally linear embedding (LLE) all utilize local neighborhood information to construct a global embedding of the manifold. We show how all three algorithms can be described as kernel PCA on specially constructed Gram matrices, and illustrate the similarities and differences between the algorithms with representative examples.
Relational learning via latent social dimensions, in 'KDD '09
 Proceedings di of the 15th ACM SIGKDD international ti conference on Knowledge
, 2009
"... Social media such as blogs, Facebook, Flickr, etc., presents data in a network format rather than classical IID distribution. To address the interdependency among data instances, relational learning has been proposed, and collective inference based on network connectivity is adopted for prediction. ..."
Abstract

Cited by 42 (18 self)
 Add to MetaCart
Social media such as blogs, Facebook, Flickr, etc., presents data in a network format rather than classical IID distribution. To address the interdependency among data instances, relational learning has been proposed, and collective inference based on network connectivity is adopted for prediction. However, the connections in social media are often multidimensional. An actor can connect to another actor due to different factors, e.g., alumni, colleagues, living in the same city or sharing similar interest, etc. Collective inference normally does not differentiate these connections. In this work, we propose to extract latent social dimensions based on network information first, and then utilize them as features for discriminative learning. These social dimensions describe different affiliations of social actors hidden in the network, and the subsequent discriminative learning can automatically determine which affiliations are better aligned with the class labels. Such a scheme is preferred when multiple diverse relations are associated with the same network. We conduct extensive experiments on social media data (one from a realworld blog site and the other from a popular content sharing site). Our model outperforms representative relational learning methods based on collective inference, especially when few labeled data are available. The sensitivity of this model and its connection to existing methods are also carefully examined.
Graph Kernels
, 2007
"... We present a unified framework to study graph kernels, special cases of which include the random walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004; Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time complexit ..."
Abstract

Cited by 42 (4 self)
 Add to MetaCart
We present a unified framework to study graph kernels, special cases of which include the random walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004; Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time complexity of kernel computation between unlabeled graphs with n vertices from O(n 6) to O(n 3). We find a spectral decomposition approach even more efficient when computing entire kernel matrices. For labeled graphs we develop conjugate gradient and fixedpoint methods that take O(dn 3) time per iteration, where d is the size of the label set. By extending the necessary linear algebra to Reproducing Kernel Hilbert Spaces (RKHS) we obtain the same result for ddimensional edge kernels, and O(n 4) in the infinitedimensional case; on sparse graphs these algorithms only take O(n 2) time per iteration in all cases. Experiments on graphs from bioinformatics and other application domains show that these techniques can speed up computation of the kernel by an order of magnitude or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to Rconvolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment kernel of Fröhlich et al. (2006) yet provably positive semidefinite.
Visual Rank: applying Page Rank to largescale image search
 IEEE Trans. Pattern Analysis and Machine Intelligence
, 2008
"... Abstract—Because of the relative ease in understanding and processing text, commercial imagesearch systems often rely on techniques that are largely indistinguishable from text search. Recently, academic studies have demonstrated the effectiveness of employing imagebased features to provide either ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
Abstract—Because of the relative ease in understanding and processing text, commercial imagesearch systems often rely on techniques that are largely indistinguishable from text search. Recently, academic studies have demonstrated the effectiveness of employing imagebased features to provide either alternative or additional signals to use in this process. However, it remains uncertain whether such techniques will generalize to a large number of popular Web queries and whether the potential improvement to search quality warrants the additional computational cost. In this work, we cast the imageranking problem into the task of identifying “authority ” nodes on an inferred visual similarity graph and propose VisualRank to analyze the visual link structures among images. The images found to be “authorities ” are chosen as those that answer the imagequeries well. To understand the performance of such an approach in a real system, we conducted a series of largescale experiments based on the task of retrieving images for 2,000 of the most popular products queries. Our experimental results show significant improvement, in terms of user satisfaction and relevancy, in comparison to the most recent Google Image Search results. Maintaining modest computational cost is vital to ensuring that this procedure can be used in practice; we describe the techniques required to make this system practical for largescale deployment in commercial search engines. Index Terms—Image ranking, contentbased image retrieval, eigenvector centrality, graph theory. Ç
Spectral feature selection for supervised and unsupervised learning
 In ICML
, 2007
"... Feature selection aims to reduce dimensionality for building comprehensible learning models with good generalization performance. Feature selection algorithms are largely studied separately according to the type of learning: supervised or unsupervised. This work exploits intrinsic properties underly ..."
Abstract

Cited by 40 (11 self)
 Add to MetaCart
Feature selection aims to reduce dimensionality for building comprehensible learning models with good generalization performance. Feature selection algorithms are largely studied separately according to the type of learning: supervised or unsupervised. This work exploits intrinsic properties underlying supervised and unsupervised feature selection algorithms, and proposes a unified framework for feature selection based on spectral graph theory. The proposed framework is able to generate families of algorithms for both supervised and unsupervised feature selection. And we show that existing powerful algorithms such as ReliefF (supervised) and Laplacian Score (unsupervised) are special cases of the proposed framework. To the best of our knowledge, this work is the first attempt to unify supervised and unsupervised feature selection, and enable their joint study under a general framework. Experiments demonstrated the efficacy of the novel algorithms derived from the framework. 1.
PageRank for Product Image Search
 IN: WWW 2008. REFEREED TRACK: RICH MEDIA
, 2008
"... In this paper, we cast the imageranking problem into the task of identifying “authority” nodes on an inferred visual similarity graph and propose an algorithm to analyze the visual link structure that can be created among a group of images. Through an iterative procedure based on the PageRank compu ..."
Abstract

Cited by 38 (0 self)
 Add to MetaCart
In this paper, we cast the imageranking problem into the task of identifying “authority” nodes on an inferred visual similarity graph and propose an algorithm to analyze the visual link structure that can be created among a group of images. Through an iterative procedure based on the PageRank computation, a numerical weight is assigned to each image; this measures its relative importance to the other images being considered. The incorporation of visual signals in this process differs from the majority of largescale commercialsearch engines in use today. Commercial searchengines often solely rely on the text clues of the pages in which images are embedded to rank images, and often entirely ignore the content of the images themselves as a ranking signal. To quantify the performance of our approach in a realworld system, we conducted a series of experiments based on the task of retrieving images for 2000 of the most popular products queries. Our experimental results show significant improvement, in terms of user satisfaction and relevancy, in comparison to the most recent Google Image Search results.