Results 1 
2 of
2
From SOS Rules to Proof Principles: An Operational Metatheory for Functional Languages
 In Proc. POPL'97, the 24 th ACM SIGPLANSIGACT Symposium on Principles of Programming Languages
, 1997
"... Structural Operational Semantics (SOS) is a widely used formalism for specifying the computational meaning of programs, and is commonly used in specifying the semantics of functional languages. Despite this widespread use there has been relatively little work on the imetatheoryj for such semantics. ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
Structural Operational Semantics (SOS) is a widely used formalism for specifying the computational meaning of programs, and is commonly used in specifying the semantics of functional languages. Despite this widespread use there has been relatively little work on the imetatheoryj for such semantics. As a consequence the operational approach to reasoning is considered ad hoc since the same basic proof techniques and reasoning tools are reestablished over and over, once for each operational semantics speciøcation. This paper develops some metatheory for a certain class of SOS language speciøcations for functional languages. We deøne a rule format, Globally Deterministic SOS (gdsos), and establish some proof principles for reasoning about equivalence which are sound for all languages which can be expressed in this format. More speciøcally, if the SOS rules for the operators of a language conform to the syntax of the gdsos format, then ffl a syntactic analogy of continuity holds, which rel...
Natural Semantics for NonDeterminism
, 1993
"... We present a natural semantics for the untyped lazy calculus plus McCarthy's amb, a nondeterministic choice operator. The natural semantics includes rules for both convergent behaviour (dened inductively) and divergent behaviour (dened coinductively). This semantics is equivalent to a small ste ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We present a natural semantics for the untyped lazy calculus plus McCarthy's amb, a nondeterministic choice operator. The natural semantics includes rules for both convergent behaviour (dened inductively) and divergent behaviour (dened coinductively). This semantics is equivalent to a small step reduction semantics that corresponds closely to our operational intuitions about McCarthy's amb. We present equivalences for convergent and divergent behaviour based on the natural semantics and prove a Context Lemma for the convergence equivalence. We then give a theory l 8 , based on the equivalences for convergent and divergent behaviour. Since it is able to distinguish between programs that dier only in their divergent behaviour, the theory is more discriminating than equational theories based on current domaintheoretic models. It is therefore more suitable for reasoning about functional programs containing McCarthy's amb. Contents 1 Introduction 2 2 Related Work 3 3 ...