Results 1  10
of
64
Using Bayesian networks to analyze expression data
 Journal of Computational Biology
, 2000
"... DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biologica ..."
Abstract

Cited by 813 (17 self)
 Add to MetaCart
(Show Context)
DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biological features of cellular systems. In this paper, we propose a new framework for discovering interactions between genes based on multiple expression measurements. This framework builds on the use of Bayesian networks for representing statistical dependencies. A Bayesian network is a graphbased model of joint multivariate probability distributions that captures properties of conditional independence between variables. Such models are attractive for their ability to describe complex stochastic processes and because they provide a clear methodology for learning from (noisy) observations. We start by showing how Bayesian networks can describe interactions between genes. We then describe a method for recovering gene interactions from microarray data using tools for learning Bayesian networks. Finally, we demonstrate this method on the S. cerevisiae cellcycle measurements of Spellman et al. (1998). Key words: gene expression, microarrays, Bayesian methods. 1.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 598 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
The Bayes Net Toolbox for MATLAB
 Computing Science and Statistics
, 2001
"... The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the ..."
Abstract

Cited by 186 (1 self)
 Add to MetaCart
(Show Context)
The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the web page has received over 28,000 hits since May 2000. In this paper, we discuss a broad spectrum of issues related to graphical models (directed and undirected), and describe, at a highlevel, how BNT was designed to cope with them all. We also compare BNT to other software packages for graphical models, and to the nascent OpenBayes effort.
Inferring Subnetworks from Perturbed Expression Profiles
, 2001
"... Genomewide expression profiles of genetic mutants provide a wide variety of measurements of cellular responses to perturbations. Typical analysis of such data identifies genes affected by perturbation and uses clustering to group genes of similar function. In this paper we discover a finer structur ..."
Abstract

Cited by 168 (13 self)
 Add to MetaCart
Genomewide expression profiles of genetic mutants provide a wide variety of measurements of cellular responses to perturbations. Typical analysis of such data identifies genes affected by perturbation and uses clustering to group genes of similar function. In this paper we discover a finer structure of interactions between genes, such as causality, mediation, activation, and inhibition by using a Bayesian network framework. We extend this framework to correctly handle perturbations, and to identify significant subnetworks of interacting genes. We apply this method to expression data of S. cerevisiae mutants and uncover a variety of structured metabolic, signaling and regulatory pathways. Contact: danab@cs.huji.ac.il
Active Learning for Structure in Bayesian Networks
 IN INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
, 2001
"... The task of causal structure discovery from empirical data is a fundamental problem in many areas. Experimental data is crucial for accomplishing this task. However, experiments are typically expensive, and must be selected with great care. This paper ..."
Abstract

Cited by 57 (2 self)
 Add to MetaCart
The task of causal structure discovery from empirical data is a fundamental problem in many areas. Experimental data is crucial for accomplishing this task. However, experiments are typically expensive, and must be selected with great care. This paper
Active Learning of Causal Bayes Net Structure
, 2001
"... We propose a decision theoretic approach for deciding which interventions to perform so as to learn the causal structure of a model as quickly as possible. Without such interventions, it is impossible to distinguish between Markov equivalent models, even given infinite data. We perform online MCMC t ..."
Abstract

Cited by 41 (1 self)
 Add to MetaCart
(Show Context)
We propose a decision theoretic approach for deciding which interventions to perform so as to learn the causal structure of a model as quickly as possible. Without such interventions, it is impossible to distinguish between Markov equivalent models, even given infinite data. We perform online MCMC to estimate the posterior over graph structures, and use importance sampling to find the best action to perform at each step. We assume the data is discretevalued and fully observed.
Exact bayesian structure learning from uncertain interventions
 AI & Statistics, In
, 2007
"... We show how to apply the dynamic programming algorithm of Koivisto and Sood [KS04, Koi06], which computes the exact posterior marginal edge probabilities p(Gij = 1D) of a DAG G given data D, to the case where the data is obtained by interventions (experiments). In particular, we consider the case w ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
(Show Context)
We show how to apply the dynamic programming algorithm of Koivisto and Sood [KS04, Koi06], which computes the exact posterior marginal edge probabilities p(Gij = 1D) of a DAG G given data D, to the case where the data is obtained by interventions (experiments). In particular, we consider the case where the targets of the interventions are a priori unknown. We show that it is possible to learn the targets of intervention at the same time as learning the causal structure. We apply our exact technique to a biological data set that had previously been analyzed using MCMC [SPP + 05, EW06, WGH06]. 1
Bayesian Network Analysis of Signaling Networks: A Primer
, 2005
"... Highthroughput proteomic data can be used to reveal the connectivity of signaling networks and the influences between signaling molecules. We present a primer on the use of Bayesian networks for this task. Bayesian networks have been successfully used to derive causal influences among biological si ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
Highthroughput proteomic data can be used to reveal the connectivity of signaling networks and the influences between signaling molecules. We present a primer on the use of Bayesian networks for this task. Bayesian networks have been successfully used to derive causal influences among biological signaling molecules (for example, in the analysis of intracellular multicolor flow cytometry). We discuss ways to automatically derive a Bayesian network model from proteomic data and to interpret the resulting model.
Reconstruction of gene networks using Bayesian learning and manipulation experiments
 Bioinformatics
, 2004
"... learning and manipulation experiments ..."
Causal Discovery from Changes
 In: Proceedings of UAI 2001
, 2001
"... We propose a new method of discovering causal structures, based on the detection of local, spontaneous changes in the underlying datagenerating model. We analyze the classes of structures that are equivalent relative to a stream of distributions produced by local changes, and devise algorithm ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
We propose a new method of discovering causal structures, based on the detection of local, spontaneous changes in the underlying datagenerating model. We analyze the classes of structures that are equivalent relative to a stream of distributions produced by local changes, and devise algorithms that output graphical representations of these equivalence classes. We present experimental results, using simulated data, and examine the errors associated with detection of changes and recovery of structures. 1