Results 1  10
of
25
HigherOrder Rewriting
 12th Int. Conf. on Rewriting Techniques and Applications, LNCS 2051
, 1999
"... This paper will appear in the proceedings of the 10th international conference on rewriting techniques and applications (RTA'99). c flSpringer Verlag. ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
This paper will appear in the proceedings of the 10th international conference on rewriting techniques and applications (RTA'99). c flSpringer Verlag.
Finite Family Developments
"... Associate to a rewrite system R having rules l → r, its labelled version R ω having rules l ◦ m+1 → r • , for any natural number m m ∈ ω. These rules roughly express that a lefthand side l carrying labels all larger than m can be replaced by its righthand side r carrying labels all smaller than o ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
Associate to a rewrite system R having rules l → r, its labelled version R ω having rules l ◦ m+1 → r • , for any natural number m m ∈ ω. These rules roughly express that a lefthand side l carrying labels all larger than m can be replaced by its righthand side r carrying labels all smaller than or equal to m. A rewrite system R enjoys finite family developments (FFD) if R ω is terminating. We show that the class of higher order pattern rewrite systems enjoys FFD, extending earlier results for the lambda calculus and first order term rewrite systems.
Discrete Normalization and Standardization in Deterministic Residual Structures
 In ALP '96 [ALP96
, 1996
"... . We prove a version of the Standardization Theorem and the Discrete Normalization (DN) Theorem in stable Deterministic Residual Structures, which are Abstract Reduction Systems with axiomatized residual relation, and model orthogonal rewrite systems. The latter theorem gives a strategy for construc ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
. We prove a version of the Standardization Theorem and the Discrete Normalization (DN) Theorem in stable Deterministic Residual Structures, which are Abstract Reduction Systems with axiomatized residual relation, and model orthogonal rewrite systems. The latter theorem gives a strategy for construction of reductions L'evyequivalent (or permutationequivalent) to a given, finite or infinite, regular (or semilinear) reduction, based on the neededness concept of Huet and L'evy. This and other results of this paper add to the understanding of L'evyequivalence of reductions, and consequently, L'evy's reduction space. We demonstrate how elements of this space can be used to give denotational semantics to known functional languages in an abstract manner. 1 Introduction Long ago, Curry and Feys [CuFe58] proved that repeated contraction of leftmostoutermost redexes in any normalizable term eventually yields its normal form, even if the term possesses infinite reductions as well. The reaso...
Perpetual Reductions in λCalculus
, 1999
"... This paper surveys a part of the theory of fireduction in calculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from terms (when possible), and with perpetual red ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
This paper surveys a part of the theory of fireduction in calculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from terms (when possible), and with perpetual redexes, i.e., redexes whose contraction in terms preserves the possibility (when present) of infinite reduction paths. The survey not only recasts classical theorems in a unified setting, but also offers new results, proofs, and techniques, as well as a number of applications to problems in calculus and type theory. 1. Introduction Considerable attention has been devoted to classification of reduction strategies in typefree calculus [4, 6, 7, 15, 38, 44, 81]see also [2, Ch. 13]. We are concerned with strategies differing in the length of reduction paths. This paper draws on several sources. In late 1994, van Raamsdonk and Severi [59] and Srensen [66, 67] independently developed ...
Perpetuality and Uniform Normalization in Orthogonal Rewrite Systems
 INFORMATION AND COMPUTATION
"... We present two characterizations of perpetual redexes, which are redexes whose contractions retain the possibility of infinite reductions. These characterizations generalize and strengthen existing criteria for the perpetuality of redexes in orthogonal Term Rewriting Systems and the calculus due ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We present two characterizations of perpetual redexes, which are redexes whose contractions retain the possibility of infinite reductions. These characterizations generalize and strengthen existing criteria for the perpetuality of redexes in orthogonal Term Rewriting Systems and the calculus due to Bergstra and Klop, and others. To unify our results with those in the literature, we introduce Contextsensitive Conditional Expression Reduction Systems (CCERSs) and prove confluence for orthogonal CCERSs. We then define a perpetual onestep reduction strategy which enables one to construct minimal (w.r.t. Levy's permutation ordering on reductions) infinite reductions in orthogonal CCERSs. We then prove (1) perpetuality (in a specific context) of a redex whose contraction does not erase potentially infinite arguments, which are possibly finite (i.e., strongly normalizable) arguments that may become infinite after a number of outside steps, and (2) perpetuality (in every con...
Perpetual Reductions in λCalculus
, 1999
"... This paper surveys a part of the theory of fireduction in λcalculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from λterms (when possible), and with perpetual r ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
This paper surveys a part of the theory of fireduction in λcalculus which might aptly be called perpetual reductions. The theory is concerned with perpetual reduction strategies, i.e., reduction strategies that compute infinite reduction paths from λterms (when possible), and with perpetual redexes, i.e., redexes whose contraction in λterms preserves the possibility (when present) of infinite reduction paths. The survey not only recasts classical theorems in a unified setting, but also offers new results, proofs, and techniques, as well as a number of applications to problems in λcalculus and type theory.
Explicit Substitutions and Programming Languages
 In 19th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
, 1999
"... Abstract. The λcalculus has been much used to study the theory of substitution in logical systems and programming languages. However, with explicit substitutions, it is possible to get finer properties with respect to gradual implementations of substitutions as effectively done in runtimes of progr ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. The λcalculus has been much used to study the theory of substitution in logical systems and programming languages. However, with explicit substitutions, it is possible to get finer properties with respect to gradual implementations of substitutions as effectively done in runtimes of programming languages. But the theory of explicit substitutions has some defects such as nonconfluence or the nontermination of the typed case. In this paper, we stress on the subtheory of weak substitutions, which is sufficient to analyze most of the properties of programming languages, and which preserves many of the nice theorems of the λcalculus. 1
The rewriting calculus as a combinatory reduction system
 In Foundations of Software Science and Computation Structures – FoSSaCS’07, LNCS
, 2007
"... Abstract. The last few years have seen the development of the rewriting calculus (also called rhocalculus or ρcalculus) that uniformly integrates firstorder term rewriting and λcalculus. The combination of these two latter formalisms has been already handled either by enriching firstorder rewri ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. The last few years have seen the development of the rewriting calculus (also called rhocalculus or ρcalculus) that uniformly integrates firstorder term rewriting and λcalculus. The combination of these two latter formalisms has been already handled either by enriching firstorder rewriting with higherorder capabilities, like in the Combinatory Reduction Systems (crs), or by adding to λcalculus algebraic features. In a previous work, the authors showed how the semantics of crs can be expressed in terms of the ρcalculus. The converse issue is adressed here: rewriting calculus derivations are simulated by Combinatory Reduction Systems derivations. As a consequence of this result, important properties, like standardisation, are deduced for the rewriting calculus.
From HigherOrder to FirstOrder Rewriting
 In Proceedings of the 12th International Conference on Rewriting Techniques and Applications (RTA’01
, 2001
"... . We show how higherorder rewriting may be encoded into ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
. We show how higherorder rewriting may be encoded into
Oostrom, Uniform normalisation beyond orthogonality
 Proceedings of the Twelfth International Conference on Rewriting Techniques and Applications (RTA ’01), Lecture Notes in Computer Science (2001
, 2001
"... Abstract. A rewrite system is called uniformly normalising if all its steps are perpetual, i.e. are such that if s → t and s has an infinite reduction, then t has one too. For such systems termination (SN) is equivalent to normalisation (WN). A wellknown fact is uniform normalisation of orthogonal ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. A rewrite system is called uniformly normalising if all its steps are perpetual, i.e. are such that if s → t and s has an infinite reduction, then t has one too. For such systems termination (SN) is equivalent to normalisation (WN). A wellknown fact is uniform normalisation of orthogonal nonerasing term rewrite systems, e.g. the λIcalculus. In the present paper both restrictions are analysed. Orthogonality is seen to pertain to the linear part and nonerasingness to the nonlinear part of rewrite steps. Based on this analysis, a modular proof method for uniform normalisation is presented which allows to go beyond orthogonality. The method is shown applicable to biclosed first and secondorder term rewrite systems as well as to a λcalculus with explicit substitutions. 1