Results 1  10
of
78
Term Rewriting Systems
, 1992
"... Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Re ..."
Abstract

Cited by 566 (16 self)
 Add to MetaCart
Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Reduction Systems
An Implementation of Narrowing Strategies
 Journal of the ACM
, 2001
"... This paper describes an implementation of narrowing, an essential component of implementations of modern functional logic languages. These implementations rely on narrowing, in particular on some optimal narrowing strategies, to execute functional logic programs. We translate functional logic progra ..."
Abstract

Cited by 291 (121 self)
 Add to MetaCart
This paper describes an implementation of narrowing, an essential component of implementations of modern functional logic languages. These implementations rely on narrowing, in particular on some optimal narrowing strategies, to execute functional logic programs. We translate functional logic programs into imperative (Java) programs without an intermediate abstract machine. A central idea of our approach is the explicit representation and processing of narrowing computations as data objects. This enables the implementation of operationally complete strategies (i.e., without backtracking) or techniques for search control (e.g., encapsulated search). Thanks to the use of an intermediate and portable representation of programs, our implementation is general enough to be used as a common back end for a wide variety of functional logic languages.
Term Graph Rewriting
, 1998
"... Term graph rewriting is concerned with the representation of functional expressions as graphs, and the evaluation of these expressions by rulebased graph transformation. Representing expressions as graphs allows to share common subexpressions, improving the efficiency of term rewriting in space ..."
Abstract

Cited by 72 (5 self)
 Add to MetaCart
Term graph rewriting is concerned with the representation of functional expressions as graphs, and the evaluation of these expressions by rulebased graph transformation. Representing expressions as graphs allows to share common subexpressions, improving the efficiency of term rewriting in space and time. Besides efficiency, term graph rewriting differs from term rewriting in properties like termination and confluence. This paper is a survey of (acyclic) term graph rewriting, where emphasis is given to the relations between term and term graph rewriting. We focus on soundness of term graph rewriting with respect to term rewriting, on completeness for proving validity of equations and for computing term normal forms, on termination and confluence, and on term graph narrowing. Keywords: term graph rewriting, termination, confluence, term rewriting, narrowing Classification: 68Q05, 68Q40, 68Q42 (AMS '91); D.1.1, F.1.1, F.4.2, I.1.1 (CR '98) Note: This paper will appear in H...
Models of Sharing Graphs: A Categorical Semantics of let and letrec
, 1997
"... To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sha ..."
Abstract

Cited by 60 (9 self)
 Add to MetaCart
To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sharing graphs. The simplest is firstorder acyclic sharing graphs represented by letsyntax, and others are extensions with higherorder constructs (lambda calculi) and/or cyclic sharing (recursive letrec binding). For each of four settings, we provide the equational theory for representing the sharing graphs, and identify the class of categorical models which are shown to be sound and complete for the theory. The emphasis is put on the algebraic nature of sharing graphs, which leads us to the semantic account of them. We describe the models in terms of the notions of symmetric monoidal categories and functors, additionally with symmetric monoidal adjunctions and traced
Parallel Evaluation Strategies for Functional Logic Languages
 In Proc. of the Fourteenth International Conference on Logic Programming (ICLP’97
, 1997
"... We introduce novel, sound, complete, and locally optimal evaluation strategies for functional logic programming languages. Our strategies combine, in a nontrivial way, two landmark techniques in this area: the computation of unifiers performed by needed narrowing in inductively sequential rewrite s ..."
Abstract

Cited by 46 (25 self)
 Add to MetaCart
We introduce novel, sound, complete, and locally optimal evaluation strategies for functional logic programming languages. Our strategies combine, in a nontrivial way, two landmark techniques in this area: the computation of unifiers performed by needed narrowing in inductively sequential rewrite systems and the simultaneous reduction of a necessary set of redexes performed by rewriting in weakly orthogonal, constructorbased rewrite systems. First, we define a sequential strategy similar in scope to other narrowing strategies used in modern lazy functional logic languages. Then, based on the sequential strategy, we define a parallel narrowing strategy that has several noteworthy characteristics: it is the first complete narrowing strategy which evaluates ground expressions in a fully deterministic, optimal way; it computes shortest derivations and minimal sets of solutions on inductively sequential rewrite systems; and when combined with term simplification, it subsumes and improves all r...
The Ins and Outs of Clean I/O
, 1995
"... Functional programming languages have banned assignment because of its undesirable properties. The reward of this rigorous decision is that functional programming languages are sideeffect free. There is another side to the coin: because assignment plays a crucial role in Input/Output (I/O), functio ..."
Abstract

Cited by 42 (7 self)
 Add to MetaCart
Functional programming languages have banned assignment because of its undesirable properties. The reward of this rigorous decision is that functional programming languages are sideeffect free. There is another side to the coin: because assignment plays a crucial role in Input/Output (I/O), functional languages have a hard time dealing with I/O. Functional programming languages have therefore often been stigmatised as inferior to imperative programming languages because they cannot deal with I/0 very well. In this paper we show that I/O can be incorporated in a functional programming language without loss of any of the generally accepted advantages of functional programming languages. This discussion is supported by an extensive account of the I/O system offered by the lazy, purely functional programming language Clean. Two aspects that are paramount in its I/O stem make the approach novel with respect to other approaches. These aspects are the technique of explicit multiple environment passing, and the Event I/O framework to program Graphical User I/O in a highly structured and highlevel way. Clean file I/O is as powerful and flexible as it is in common imperative languages (one can read, write, and seek directly in a file). Clean Event I/O provides programmers with a highlevel framework to specify complex Graphical User I/O. It has been used to write applications such as a windowbased text editor, an object based drawing program, a relational database, and a spreadsheet program. These graphical interactive programs are completely machine independent, but still obey the lookandfeel of the concrete window environment being used. The specifications are completely functional and make extensive use of uniqueness typing, higherorder functions, and algebraic data type...
A Naïve Time Analysis and its Theory of Cost Equivalence
 Journal of Logic and Computation
, 1995
"... Techniques for reasoning about extensional properties of functional programs are well understood, but methods for analysing the underlying intensional or operational properties have been much neglected. This paper begins with the development of a simple but useful calculus for time analysis of nons ..."
Abstract

Cited by 39 (7 self)
 Add to MetaCart
Techniques for reasoning about extensional properties of functional programs are well understood, but methods for analysing the underlying intensional or operational properties have been much neglected. This paper begins with the development of a simple but useful calculus for time analysis of nonstrict functional programs with lazy lists. One limitation of this basic calculus is that the ordinary equational reasoning on functional programs is not valid. In order to buy back some of these equational properties we develop a nonstandard operational equivalence relation called cost equivalence, by considering the number of computation steps as an `observable' component of the evaluation process. We define this relation by analogy with Park's definition of bisimulation in CCS. This formulation allows us to show that cost equivalence is a contextual congruence (and thus is substitutive with respect to the basic calculus) and provides useful proof techniques for establishing costequivalen...
Cyclic Lambda Calculi
, 1997
"... . We precisely characterize a class of cyclic lambdagraphs, and then give a sound and complete axiomatization of the terms that represent a given graph. The equational axiom system is an extension of lambda calculus with the letrec construct. In contrast to current theories, which impose restrictio ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
. We precisely characterize a class of cyclic lambdagraphs, and then give a sound and complete axiomatization of the terms that represent a given graph. The equational axiom system is an extension of lambda calculus with the letrec construct. In contrast to current theories, which impose restrictions on where the rewriting can take place, our theory is very liberal, e.g., it allows rewriting under lambdaabstractions and on cycles. As shown previously, the reduction theory is nonconfluent. We thus introduce an approximate notion of confluence. Using this notion we define the infinite normal form or L'evyLongo tree of a cyclic term. We show that the infinite normal form defines a congruence on the set of terms. We relate our cyclic lambda calculus to the traditional lambda calculus and to the infinitary lambda calculus. Since most implementations of nonstrict functional languages rely on sharing to avoid repeating computations, we develop a variant of our calculus that enforces the ...
Tutorial introduction to graph transformation: A software engineering perspective
 In Proc. of the First International Conference on Graph Transformation (ICGT 2002
, 2002
"... ..."
Dactl: An Experimental Graph Rewriting Language
 Proc. 4th International Workshop on Graph Grammars
, 1991
"... This paper gives some examples of how computation in a number of languages may be described as graph rewriting, giving the Dactl notation for the examples shown. It goes on to present the Dactl model more formally before giving a formal definition of the syntax and semantics of the language. 2 Examp ..."
Abstract

Cited by 34 (7 self)
 Add to MetaCart
This paper gives some examples of how computation in a number of languages may be described as graph rewriting, giving the Dactl notation for the examples shown. It goes on to present the Dactl model more formally before giving a formal definition of the syntax and semantics of the language. 2 Examples of Computation by Graph Rewriting