Results 1  10
of
12
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 882 (2 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.
Quantum complexity theory
 in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract

Cited by 482 (5 self)
 Add to MetaCart
Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This construction is substantially more complicated than the corresponding construction for classical Turing machines (TMs); in fact, even simple primitives such as looping, branching, and composition are not straightforward in the context of quantum Turing machines. We establish how these familiar primitives can be implemented and introduce some new, purely quantum mechanical primitives, such as changing the computational basis and carrying out an arbitrary unitary transformation of polynomially bounded dimension. We also consider the precision to which the transition amplitudes of a quantum Turing machine need to be specified. We prove that O(log T) bits of precision suffice to support a T step computation. This justifies the claim that the quantum Turing machine model should be regarded as a discrete model of computation and not an analog one. We give the first formal evidence that quantum Turing machines violate the modern (complexity theoretic) formulation of the Church–Turing thesis. We show the existence of a problem, relative to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires superpolynomial time on a boundederror probabilistic Turing machine, and thus not in the class BPP. The class BQP of languages that are efficiently decidable (with small errorprobability) on a quantum Turing machine satisfies BPP ⊆ BQP ⊆ P ♯P. Therefore, there is no possibility of giving a mathematical proof that quantum Turing machines are more powerful than classical probabilistic Turing machines (in the unrelativized setting) unless there is a major breakthrough in complexity theory.
Strengths and Weaknesses of quantum computing
 SIAM JOURNAL OF COMPUTATION
, 1997
"... Recently a great deal of attention has been focused on quantum computation following a ..."
Abstract

Cited by 320 (9 self)
 Add to MetaCart
Recently a great deal of attention has been focused on quantum computation following a
Faulttolerant quantum computation
 In Proc. 37th FOCS
, 1996
"... It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information i ..."
Abstract

Cited by 201 (4 self)
 Add to MetaCart
It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information in a superposition of states in a quantum computer, making long computations impossible. A further difficulty is that inaccuracies in quantum state transformations throughout the computation accumulate, rendering long computations unreliable. However, these obstacles may not be as formidable as originally believed. For any quantum computation with t gates, we show how to build a polynomial size quantum circuit that tolerates O(1 / log c t) amounts of inaccuracy and decoherence per gate, for some constant c; the previous bound was O(1 /t). We do this by showing that operations can be performed on quantum data encoded by quantum errorcorrecting codes without decoding this data. 1.
Quantum Computability
 SIAM Journal of Computation
, 1997
"... Abstract. In this paper some theoretical and (potentially) practical aspects of quantum computing are considered. Using the tools of transcendental number theory it is demonstrated that quantum Turing machines (QTM) with rational amplitudes are sufficient to define the class of bounded error quantum ..."
Abstract

Cited by 114 (0 self)
 Add to MetaCart
Abstract. In this paper some theoretical and (potentially) practical aspects of quantum computing are considered. Using the tools of transcendental number theory it is demonstrated that quantum Turing machines (QTM) with rational amplitudes are sufficient to define the class of bounded error quantum polynomial time (BQP) introduced by Bernstein and Vazirani [Proc. 25th ACM Symposium on Theory of Computation, 1993, pp. 11–20, SIAM J. Comput., 26 (1997), pp. 1411–1473]. On the other hand, if quantum Turing machines are allowed unrestricted amplitudes (i.e., arbitrary complex amplitudes), then the corresponding BQP class has uncountable cardinality and contains sets of all Turing degrees. In contrast, allowing unrestricted amplitudes does not increase the power of computation for errorfree quantum polynomial time (EQP). Moreover, with unrestricted amplitudes, BQP is not equal to EQP. The relationship between quantum complexity classes and classical complexity classes is also investigated. It is shown that when quantum Turing machines are restricted to have transition amplitudes which are algebraic numbers, BQP, EQP, and nondeterministic quantum polynomial time (NQP) are all contained in PP, hence in P #P and PSPACE. A potentially practical issue of designing “machine independent ” quantum programs is also addressed. A single (“almost universal”) quantum algorithm based on Shor’s method for factoring integers is developed which would run correctly on almost all quantum computers, even if the underlying unitary transformations are unknown to the programmer and the device builder.
The complexity of analog computation
 in Math. and Computers in Simulation 28(1986
"... We ask if analog computers can solve NPcomplete problems efficiently. Regarding this as unlikely, we formulate a strong version of Church’s Thesis: that any analog computer can be simulated efficiently (in polynomial time) by a digital computer. From this assumption and the assumption that P ≠ NP w ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
We ask if analog computers can solve NPcomplete problems efficiently. Regarding this as unlikely, we formulate a strong version of Church’s Thesis: that any analog computer can be simulated efficiently (in polynomial time) by a digital computer. From this assumption and the assumption that P ≠ NP we can draw conclusions about the operation of physical devices used for computation. An NPcomplete problem, 3SAT, is reduced to the problem of checking whether a feasible point is a local optimum of an optimization problem. A mechanical device is proposed for the solution of this problem. It encodes variables as shaft angles and uses gears and smooth cams. If we grant Strong Church’s Thesis, that P ≠ NP, and a certain ‘‘Downhill Principle’ ’ governing the physical behavior of the machine, we conclude that it cannot operate successfully while using only polynomial resources. We next prove Strong Church’s Thesis for a class of analog computers described by wellbehaved ordinary differential equations, which we can take as representing part of classical mechanics. We conclude with a comment on the recently discovered connection between spin glasses and combinatorial optimization. 1.
Local transition functions of quantum Turing machines
 RAIRO Theor. Inform. Appl
, 1998
"... Foundations of the notion of quantum Turing machines are investigated. According to Deutsch’s formulation, the time evolution of a quantum Turing machine is to be determined by the local transition function. In this paper, the local transition functions are characterized for fully general quantum Tu ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
Foundations of the notion of quantum Turing machines are investigated. According to Deutsch’s formulation, the time evolution of a quantum Turing machine is to be determined by the local transition function. In this paper, the local transition functions are characterized for fully general quantum Turing machines, including multitape quantum Turing machines, extending an earlier attempt due to Bernstein and Vazirani.
Introduction to Quantum Algorithms
, 2001
"... Abstract. These notes discuss the quantum algorithms we know of that can solve problems significantly faster than the corresponding classical algorithms. ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
Abstract. These notes discuss the quantum algorithms we know of that can solve problems significantly faster than the corresponding classical algorithms.
Computational complexity of uniform quantum circuit families and quantum Turing machines
, 1999
"... Deutsch proposed two sorts of models of quantum computers, quantum Turing machines (QTMs) and quantum circuit families (QCFs). At present quantum algorithms are represented by these two models. This paper shows the equivalence of the computational powers of these two models. For this purpose, we int ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
Deutsch proposed two sorts of models of quantum computers, quantum Turing machines (QTMs) and quantum circuit families (QCFs). At present quantum algorithms are represented by these two models. This paper shows the equivalence of the computational powers of these two models. For this purpose, we introduce two notions of uniformity for QCFs and complexity classes based on uniform QCFs. For Monte Carlo algorithms, it is proved that the complexity classes based on uniform QCFs are identical with the corresponding classes based on QTMs. For Las Vegas algorithms, various complexity classes are introduced for QTMs and QCFs according to constraints on the algorithms and their interrelations are investigated in detail. In addition, we generalize Yao’s construction of quantum circuits simulating single tape QTMs to multitape QTMs and give a complete proof of the existence of a universal QTM simulating multitape QTMs efficiently.