Results 1 
2 of
2
Normal Forms and CutFree Proofs as Natural Transformations
 in : Logic From Computer Science, Mathematical Science Research Institute Publications 21
, 1992
"... What equations can we guarantee that simple functional programs must satisfy, irrespective of their obvious defining equations? Equivalently, what nontrivial identifications must hold between lambda terms, thoughtof as encoding appropriate natural deduction proofs ? We show that the usual syntax g ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
(Show Context)
What equations can we guarantee that simple functional programs must satisfy, irrespective of their obvious defining equations? Equivalently, what nontrivial identifications must hold between lambda terms, thoughtof as encoding appropriate natural deduction proofs ? We show that the usual syntax guarantees that certain naturality equations from category theory are necessarily provable. At the same time, our categorical approach addresses an equational meaning of cutelimination and asymmetrical interpretations of cutfree proofs. This viewpoint is connected to Reynolds' relational interpretation of parametricity ([27], [2]), and to the KellyLambekMac LaneMints approach to coherence problems in category theory. 1 Introduction In the past several years, there has been renewed interest and research into the interconnections of proof theory, typed lambda calculus (as a functional programming paradigm) and category theory. Some of these connections can be surprisingly subtle. Here we a...