Results 1 
4 of
4
The Shuffle Hopf Algebra and Noncommutative Full Completeness
, 1999
"... We present a full completeness theorem for the multiplicative fragment of a variant of noncommutative linear logic, Yetter's cyclic linear logic (CyLL). The semantics is obtained by interpreting proofs as dinatural transformations on a category of topological vector spaces, these transformations b ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
We present a full completeness theorem for the multiplicative fragment of a variant of noncommutative linear logic, Yetter's cyclic linear logic (CyLL). The semantics is obtained by interpreting proofs as dinatural transformations on a category of topological vector spaces, these transformations being equivariant under certain actions of a noncocommutative Hopf algebra called the shuffle algebra. Multiplicative sequents are assigned a vector space of such dinaturals, and we show that this space has as a basis the denotations of cutfree proofs in CyLL+MIX. This can be viewed as a fully faithful representation of a free *autonomous category, canonically enriched over vector spaces. This paper
Linear L"auchli semantics
 Annals Pure Appl. Logic
, 1996
"... Dedicated to the memory of Moez Alimohamed ..."
A Noncommutative Full Completeness Theorem (Extended Abstract)
 Elsevier Science B.V
, 1996
"... ) R.F. Blute 1 P.J. Scott 1 Dept. of Mathematics University of Ottawa Ottawa, Ontario K1N 6N5 CANADA E. N. T. C. S. Elsevier Science B. V. Abstract We present a full completeness theorem for the multiplicative fragment of a variant of noncommutative linear logic known as cyclic linear logic (Cy ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
) R.F. Blute 1 P.J. Scott 1 Dept. of Mathematics University of Ottawa Ottawa, Ontario K1N 6N5 CANADA E. N. T. C. S. Elsevier Science B. V. Abstract We present a full completeness theorem for the multiplicative fragment of a variant of noncommutative linear logic known as cyclic linear logic (CyLL), first defined by Yetter. The semantics is obtained by considering dinatural transformations on a category of topological vector spaces which are invariant under certain actions of a noncocommutative Hopf algebra, called the shuffle algebra. Multiplicative sequents are assigned a vector space of such dinaturals, and we show that the space has the denotations of cutfree proofs in CyLL+MIX as a basis. This work is a natural extension of the authors' previous work, "Linear Lauchli Semantics", where a similar theorem is obtained for the commutative logic. In that paper, we consider dinaturals which are invariant under certain actions of the additive group of integers. The passage from group...