Results 1  10
of
47
A New Deconstructive Logic: Linear Logic
, 1995
"... The main concern of this paper is the design of a noetherian and confluent normalization for LK 2 (that is, classical second order predicate logic presented as a sequent calculus). The method we present is powerful: since it allows us to recover as fragments formalisms as seemingly different a ..."
Abstract

Cited by 127 (11 self)
 Add to MetaCart
The main concern of this paper is the design of a noetherian and confluent normalization for LK 2 (that is, classical second order predicate logic presented as a sequent calculus). The method we present is powerful: since it allows us to recover as fragments formalisms as seemingly different as Girard's LC and Parigot's , FD ([9, 11, 27, 31]), delineates other viable systems as well, and gives means to extend the Krivine/Leivant paradigm of `programmingwithproofs' ([22, 23]) to classical logic; it is painless: since we reduce strong normalization and confluence to the same properties for linear logic (for nonadditive proof nets, to be precise) using appropriate embeddings (socalled decorations); it is unifying: it organizes known solutions in a simple pattern that makes apparent the how and why of their making. A comparison of our method to that of embedding LK into LJ (intuitionistic sequent calculus) brings to the fore the latter's defects for these `deconstructi...
Higherorder Unification via Explicit Substitutions (Extended Abstract)
 Proceedings of LICS'95
, 1995
"... Higherorder unification is equational unification for βηconversion. But it is not firstorder equational unification, as substitution has to avoid capture. In this paper higherorder unification is reduced to firstorder equational unification in a suitable theory: the &lambda ..."
Abstract

Cited by 109 (13 self)
 Add to MetaCart
Higherorder unification is equational unification for &beta;&eta;conversion. But it is not firstorder equational unification, as substitution has to avoid capture. In this paper higherorder unification is reduced to firstorder equational unification in a suitable theory: the &lambda;&sigma;calculus of explicit substitutions.
The cartesian closed bicategory of generalised species of structures
, 2006
"... Abstract. The concept of generalised species of structures between small categories and, correspondingly, that of generalised analytic functor between presheaf categories are introduced. An operation of substitution for generalised species, which is the counterpart to the composition of generalised ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
Abstract. The concept of generalised species of structures between small categories and, correspondingly, that of generalised analytic functor between presheaf categories are introduced. An operation of substitution for generalised species, which is the counterpart to the composition of generalised analytic functors, is also put forward. These definitions encompass most notions of combinatorial species considered in the literature—including of course Joyal’s original notion—together with their associated substitution operation. Our first main result exhibits the substitution calculus of generalised species as arising from a Kleisli bicategory for a pseudocomonad on profunctors. Our second main result establishes that the bicategory of generalised species of structures is cartesian closed. 1.
Intersection types for explicit substitutions
, 2003
"... We present a new system of intersection types for a compositionfree calculus of explicit substitutions with a rule for garbage collection, and show that it characterizes those terms which are strongly normalizing. This system extends previous work on the natural generalization of the classical inte ..."
Abstract

Cited by 22 (8 self)
 Add to MetaCart
(Show Context)
We present a new system of intersection types for a compositionfree calculus of explicit substitutions with a rule for garbage collection, and show that it characterizes those terms which are strongly normalizing. This system extends previous work on the natural generalization of the classical intersection types system, which characterized head normalization and weak normalization, but was not complete for strong normalization. An important role is played by the notion of available variable in a term, which is a generalization of the classical notion of free variable.
Strong Stability and the Incompleteness of Stable Models for λCalculus
 ANNALS OF PURE AND APPLIED LOGIC
, 1999
"... We prove that the class of stable models is incomplete with respect to pure λcalculus. More precisely, we show that no stable model has the same theory as the strongly stable version of Park's model. This incompleteness proof can be adapted to the continuous case, giving an incompleteness proo ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
We prove that the class of stable models is incomplete with respect to pure λcalculus. More precisely, we show that no stable model has the same theory as the strongly stable version of Park's model. This incompleteness proof can be adapted to the continuous case, giving an incompleteness proof for this case which is much simpler than the original proof by Honsell an Ronchi della Rocca. Moreover, we isolate a very simple finite set, F , of equations and inequations, which has neither a stable nor a continuous model, and which is included in Th(P fs ) and in T
Completeness and Partial Soundness Results for Intersection & Union Typing for λµ ˜µ
 Annals of Pure and Applied Logic
"... This paper studies intersection and union type assignment for the calculus λµ ˜µ [17], a proofterm syntax for Gentzen’s classical sequent calculus, with the aim of defining a typebased semantics, via setting up a system that is closed under conversion. We will start by investigating what the minima ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
(Show Context)
This paper studies intersection and union type assignment for the calculus λµ ˜µ [17], a proofterm syntax for Gentzen’s classical sequent calculus, with the aim of defining a typebased semantics, via setting up a system that is closed under conversion. We will start by investigating what the minimal requirements are for a system for λµ ˜µ to be closed under subject expansion; this coincides with System M ∩ ∪ , the notion defined in [19]; however, we show that this system is not closed under subject reduction, so our goal cannot be achieved. We will then show that System M ∩ ∪ is also not closed under subjectexpansion, but can recover from this by presenting System M C as an extension of M ∩ ∪ (by adding typing rules) and showing that it satisfies subject expansion; it still lacks subject reduction. We show how to restrict M ∩ ∪ so that it satisfies subjectreduction as well by limiting the applicability to type assignment rules, but only when limiting reduction to (confluent) callbyname or callbyvalue reduction M ∩ ∪ ; in restricting the system, we sacrifice subject expansion. These results combined show that a sound and complete intersection and union type assignment system cannot be defined for λµ ˜µ with respect to full reduction.
A general method to prove the normalization theorem for first and second order typed λcalculi
 Mathematical Structures in Computer Science
, 1999
"... and second order typed λcalculi ..."
Existential witness extraction in classical realizability and via a negative translation
 In Logical Methods in Computer Science (LMCS
, 2010
"... www.lmcsonline.org ..."
(Show Context)
Fresh logic: Prooftheory and semantics for FM and nominal . . .
, 2005
"... In this paper we introduce Fresh Logic, a natural deduction style firstorder logic extended with termformers and quantifiers derived from the FMsets model of names and binding in abstract syntax. Fresh Logic can be classical or intuitionistic depending on whether we include a law of excluded mi ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
In this paper we introduce Fresh Logic, a natural deduction style firstorder logic extended with termformers and quantifiers derived from the FMsets model of names and binding in abstract syntax. Fresh Logic can be classical or intuitionistic depending on whether we include a law of excluded middle; we present a proofnormalisation procedure for the intuitionistic case and a semantics based on Kripke models in FMsets for which it is sound and