Results 1  10
of
38
Combinatory Reduction Systems: introduction and survey
 THEORETICAL COMPUTER SCIENCE
, 1993
"... Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simpl ..."
Abstract

Cited by 93 (9 self)
 Add to MetaCart
(Show Context)
Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simplification rules for proof normalization. The original idea of CRSs is due to Aczel, who introduced a restricted class of CRSs and, under the assumption of orthogonality, proved confluence. Orthogonality means that the rules are nonambiguous (no overlap leading to a critical pair) and leftlinear (no global comparison of terms necessary). We introduce the class of orthogonal CRSs, illustrated with many examples, discuss its expressive power, and give an outline of a short proof of confluence. This proof is a direct generalization of Aczel's original proof, which is close to the wellknown confluence proof for λcalculus by Tait and MartinLof. There is a wellknown connection between the para...
Programming with Intersection Types and Bounded Polymorphism
, 1991
"... representing the official policies, either expressed or implied, of the U.S. Government. ..."
Abstract

Cited by 77 (4 self)
 Add to MetaCart
(Show Context)
representing the official policies, either expressed or implied, of the U.S. Government.
Constructive Logics. Part I: A Tutorial on Proof Systems and Typed λCalculi
, 1992
"... ..."
(Show Context)
Some lambda calculus and type theory formalized
 Journal of Automated Reasoning
, 1999
"... Abstract. We survey a substantial body of knowledge about lambda calculus and Pure Type Systems, formally developed in a constructive type theory using the LEGO proof system. On lambda calculus, we work up to an abstract, simplified, proof of standardization for beta reduction, that does not mention ..."
Abstract

Cited by 61 (9 self)
 Add to MetaCart
(Show Context)
Abstract. We survey a substantial body of knowledge about lambda calculus and Pure Type Systems, formally developed in a constructive type theory using the LEGO proof system. On lambda calculus, we work up to an abstract, simplified, proof of standardization for beta reduction, that does not mention redex positions or residuals. Then we outline the meta theory of Pure Type Systems, leading to the strengthening lemma. One novelty is our use of named variables for the formalization. Along the way we point out what we feel has been learned about general issues of formalizing mathematics, emphasizing the search for formal definitions that are convenient for formal proof and convincingly represent the intended informal concepts.
Inductive Data Type Systems
 THEORETICAL COMPUTER SCIENCE
, 1997
"... In a previous work (“Abstract Data Type Systems”, TCS 173(2), 1997), the last two authors presented a combined language made of a (strongly normalizing) algebraic rewrite system and a typed λcalculus enriched by patternmatching definitions following a certain format, called the “General Schema”, w ..."
Abstract

Cited by 52 (10 self)
 Add to MetaCart
(Show Context)
In a previous work (“Abstract Data Type Systems”, TCS 173(2), 1997), the last two authors presented a combined language made of a (strongly normalizing) algebraic rewrite system and a typed λcalculus enriched by patternmatching definitions following a certain format, called the “General Schema”, which generalizes the usual recursor definitions for natural numbers and similar “basic inductive types”. This combined language was shown to be strongly normalizing. The purpose of this paper is to reformulate and extend the General Schema in order to make it easily extensible, to capture a more general class of inductive types, called “strictly positive”, and to ease the strong normalization proof of the resulting system. This result provides a computation model for the combination of an algebraic specification language based on abstract data types and of a strongly typed functional language with strictly positive inductive types.
The Calculus of Algebraic Constructions
 In Proc. of the 10th Int. Conf. on Rewriting Techniques and Applications, LNCS 1631
, 1999
"... Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by hi ..."
Abstract

Cited by 32 (11 self)
 Add to MetaCart
(Show Context)
Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Constructions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions with functions and predicates defined by higherorder rewrite rules. In this paper, we prove that almost all CIC can be seen as a CAC, and that it can be further extended with nonstrictly positive types and inductiverecursive types together with nonfree constructors and patternmatching on defined symbols. 1.
New Notions of Reduction and NonSemantic Proofs of βStrong Normalization in Typed λCalculi
, 1994
"... Two new notions of reduction for terms of the λcalculus are introduced and the question of whether a λterm is βstrongly normalizing is reduced to the question of whether a λterm is merely normalizing under one of the new notions of reduction. This leads to a new way to provestrong normalization ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
Two new notions of reduction for terms of the λcalculus are introduced and the question of whether a λterm is βstrongly normalizing is reduced to the question of whether a λterm is merely normalizing under one of the new notions of reduction. This leads to a new way to provestrong normalization for typedcalculi. Instead of the usual semantic proof style based on Girard's "candidats de reductibilite", termination can be proved using a decreasing metric over a wellfounded ordering in a style more common in the eld of term rewriting. This new proof method is applied to the simplytyped λcalculus and the system of intersection types.
Higher Order Logic
 In Handbook of Logic in Artificial Intelligence and Logic Programming
, 1994
"... Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Definin ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Defining data types : : : : : : : : : : : : : : : : : : : : : 6 2.4 Describing processes : : : : : : : : : : : : : : : : : : : : : 8 2.5 Expressing convergence using second order validity : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.6 Truth definitions: the analytical hierarchy : : : : : : : : 10 2.7 Inductive definitions : : : : : : : : : : : : : : : : : : : : : 13 3 Canonical semantics of higher order logic : : : : : : : : : : : : 15 3.1 Tarskian semantics of second order logic : : : : : : : : : 15 3.2 Function and re
On Stratified Regions
 In Proc. of APLAS, volume 5904 of LNCS
, 2009
"... Type and effect systems are a tool to analyse statically the behaviour of programs with effects. We present a proof based on the so called reducibility candidates that a suitable stratification of the type and effect system entails the termination of the typable programs. The proof technique covers ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
(Show Context)
Type and effect systems are a tool to analyse statically the behaviour of programs with effects. We present a proof based on the so called reducibility candidates that a suitable stratification of the type and effect system entails the termination of the typable programs. The proof technique covers a simply typed, multithreaded, callbyvalue lambdacalculus, equipped with a variety of scheduling (preemptive, cooperative) and interaction mechanisms (references, channels, signals).
Typing untyped λterms, or Reducibility strikes again!
, 1995
"... It was observed by Curry that when (untyped) λterms can be assigned types, for example, simple types, these terms have nice properties (for example, they are strongly normalizing). Coppo, Dezani, and Veneri, introduced type systems using conjunctive types, and showed that several important classes ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
It was observed by Curry that when (untyped) λterms can be assigned types, for example, simple types, these terms have nice properties (for example, they are strongly normalizing). Coppo, Dezani, and Veneri, introduced type systems using conjunctive types, and showed that several important classes of (untyped) terms can be characterized according to the shape of the types that can be assigned to these terms. For example, the strongly normalizable terms, the normalizable terms, and the terms having headnormal forms, can be characterized in some systems D and D. The proofs use variants of the method of reducibility. In this paper, we presenta uniform approach for proving several metatheorems relating properties ofterms and their typability in the systems D and D. Our proofs use a new and more modular version of the reducibility method. As an application of our metatheorems, we show how the characterizations obtained by Coppo, Dezani, Veneri, and Pottinger, can be easily rederived. We alsocharacterize the terms that have weak headnormal forms, which appears to be new. We conclude by stating a number of challenging open problems regarding possible generalizations of the realizability method.