Results 1  10
of
19
A New RecursionTheoretic Characterization Of The Polytime Functions
 COMPUTATIONAL COMPLEXITY
, 1992
"... We give a recursiontheoretic characterization of FP which describes polynomial time computation independently of any externally imposed resource bounds. In particular, this syntactic characterization avoids the explicit size bounds on recursion (and the initial function 2 xy ) of Cobham. ..."
Abstract

Cited by 179 (7 self)
 Add to MetaCart
We give a recursiontheoretic characterization of FP which describes polynomial time computation independently of any externally imposed resource bounds. In particular, this syntactic characterization avoids the explicit size bounds on recursion (and the initial function 2 xy ) of Cobham.
Predicative Recursion and Computational Complexity
, 1992
"... The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct r ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct reference to polynomials, time, or even computation. Complexity classes characterized in this way include polynomial time, the functional polytime hierarchy, the logspace decidable problems, and NC. After developing these "resource free" definitions, we apply them to redeveloping the feasible logical system of Cook and Urquhart, and show how this firstorder system relates to the secondorder system of Leivant. The connection is an interesting one since the systems were defined independently and have what appear to be very different rules for the principle of induction. Furthermore it is interesting to see, albeit in a very specific context, how to retract a second order statement, ("inducti...
Fixpoint Logics, Relational Machines, and Computational Complexity
 In Structure and Complexity
, 1993
"... We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have t ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
We establish a general connection between fixpoint logic and complexity. On one side, we have fixpoint logic, parameterized by the choices of 1storder operators (inflationary or noninflationary) and iteration constructs (deterministic, nondeterministic, or alternating). On the other side, we have the complexity classes between P and EXPTIME. Our parameterized fixpoint logics capture the complexity classes P, NP, PSPACE, and EXPTIME, but equality is achieved only over ordered structures. There is, however, an inherent mismatch between complexity and logic  while computational devices work on encodings of problems, logic is applied directly to the underlying mathematical structures. To overcome this mismatch, we develop a theory of relational complexity, which bridges tha gap between standard complexity and fixpoint logic. On one hand, we show that questions about containments among standard complexity classes can be translated to questions about containments among relational complex...
Efficient First Order Functional Program Interpreter With Time Bound Certifications
, 2000
"... We demonstrate that the class of rst order functional programs over lists which terminate by multiset path ordering and admit a polynomial quasiinterpretation, is exactly the class of function computable in polynomial time. The interest of this result lies (i) on the simplicity of the conditions on ..."
Abstract

Cited by 25 (10 self)
 Add to MetaCart
We demonstrate that the class of rst order functional programs over lists which terminate by multiset path ordering and admit a polynomial quasiinterpretation, is exactly the class of function computable in polynomial time. The interest of this result lies (i) on the simplicity of the conditions on programs to certify their complexity, (ii) on the fact that an important class of natural programs is captured, (iii) and on potential applications on program optimizations. 1 Introduction This paper is part of a general investigation on the implicit complexity of a specication. To illustrate what we mean, we write below the recursive rules that computes the longest common subsequences of two words. More precisely, given two strings u = u1 um and v = v1 vn of f0; 1g , a common subsequence of length k is dened by two sequences of indices i 1 < < i k and j1 < < jk satisfying u i q = v j q . lcs(; y) ! 0 lcs(x; ) ! 0 lcs(i(x); i(y)) ! lcs(x; y) + 1 lcs(i(...
Higher Order Logic
 In Handbook of Logic in Artificial Intelligence and Logic Programming
, 1994
"... Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Definin ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Defining data types : : : : : : : : : : : : : : : : : : : : : 6 2.4 Describing processes : : : : : : : : : : : : : : : : : : : : : 8 2.5 Expressing convergence using second order validity : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.6 Truth definitions: the analytical hierarchy : : : : : : : : 10 2.7 Inductive definitions : : : : : : : : : : : : : : : : : : : : : 13 3 Canonical semantics of higher order logic : : : : : : : : : : : : 15 3.1 Tarskian semantics of second order logic : : : : : : : : : 15 3.2 Function and re
Relativizing versus nonrelativizing techniques: The role of local checkability
 UNIVERSITY OF CALIFORNIA, BERKELEY
, 1992
"... Contradictory oracle results have traditionally been interpreted as giving some evidence that resolving a complexity issue is difficult. However, for quite a while, there have been a few known complexity results that do not hold for every oracle, at least in the most obvious way of relativizing the ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Contradictory oracle results have traditionally been interpreted as giving some evidence that resolving a complexity issue is difficult. However, for quite a while, there have been a few known complexity results that do not hold for every oracle, at least in the most obvious way of relativizing the results. In the early 1990’s, a sequence of important nonrelativizing results concerning “noncontroversially relativizable ” complexity classes has been proved, mainly using algebraic techniques. Although the techniques used to obtain these results seem similar in flavor, it is not clear what common features of complexity they are exploiting. It is also not clear to what extent oracle results should be trusted as a guide to estimating the difficulty of proving complexity statements, in light of these nonrelativizing techniques. The results in this paper are intended to shed some light on these issues. First, we give a list of simple axioms based on Cobham’s machineless characterization of P [Cob64]. We show that a complexity statement (provably) holds relative to all oracles if and only if it is a consequence of these axioms. Thus, these axioms in some sense capture the set of techniques that relativize. Oracle results, while not necessarily showing that resolving a complexity conjecture is “beyond current technology” at least show that the result is
Sharply Bounded Alternation within P
, 1996
"... We define the sharply bounded hierarchy, SBH (QL), a hierarchy of classes within P , using quasilineartime computation and quantification over values of length log n. It generalizes the limited nondeterminism hierarchy introduced by Buss and Goldsmith, while retaining the invariance properties. T ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
We define the sharply bounded hierarchy, SBH (QL), a hierarchy of classes within P , using quasilineartime computation and quantification over values of length log n. It generalizes the limited nondeterminism hierarchy introduced by Buss and Goldsmith, while retaining the invariance properties. The new hierarchy has several alternative characterizations. We define both SBH (QL) and its corresponding hierarchy of function classes, FSBH(QL),and present a variety of problems in these classes, including ql m complete problems for each class in SBH (QL). We discuss the structure of the hierarchy, and show that certain simple structural conditions on it would imply P 6= PSPACE. We present characterizations of SBH (QL) relations based on alternating Turing machines and on firstorder definability, as well as recursiontheoretic characterizations of function classes corresponding to SBH (QL).
Computing on Structures
"... this paper various devices operating directly on structures, without encoding. The motivation and benefits for doing this are manyfold. On a fundamental level, encodings of structures seem to be a technical device rather than an intrinsic feature. This point has already been made by several mathemat ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
this paper various devices operating directly on structures, without encoding. The motivation and benefits for doing this are manyfold. On a fundamental level, encodings of structures seem to be a technical device rather than an intrinsic feature. This point has already been made by several mathematicians such as Tarski [Tar86], and Harvey Friedman [Fri71] (see Section 5). It has come up more recently in the context of databases, where devices computing on structures model more acurately database computation carried out against an abstract interface hiding the internal representation of data. Thus, the primary benefit of studying devices and languages computing on structures is that they clarify issues which are obscured in classical devices such as Turing machines. For example, they yield new notions of complexity, quite different from classical computational complexity. They reflect more acurately the actual complexity of computation, which, like database computation, cannot take advantage of encodings of structures. An example is provided by the query even on a set
A QuantifierFree String Theory Alogtime Reasoning
, 2000
"... The main contribution of this work is the definition of a quantifierfree string theory T1 suitable for formalizing ALOGTIME reasoning. After describing L1—a new, simple, algebraic characterization of the complexity class ALOGTIME based on strings instead of numbers—the theory T1 is defined (based ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The main contribution of this work is the definition of a quantifierfree string theory T1 suitable for formalizing ALOGTIME reasoning. After describing L1—a new, simple, algebraic characterization of the complexity class ALOGTIME based on strings instead of numbers—the theory T1 is defined (based on L1), and a detailed formal development of T1 is given. Then, theorems of T1 are shown to translate into families of propositional tautologies that have uniform polysize Frege proofs, T1 is shown to prove the soundness of a particular Frege system F, and F is shown to provably psimulate any proof system whose soundness can be proved in T1. Finally, T1 is compared with other theories for ALOGTIME reasoning in the literature. To our knowledge, this is the first formal theory for ALOGTIME reasoning whose basic objects are strings instead of numbers, and the first quantifierfree theory formalizing ALOGTIME reasoning in which a direct proof of the soundness of some Frege system has been given (in the case of firstorder theories, such a proof was first given by Arai for his theory AID). Also, the polysize Frege proofs we give for the propositional translations of theorems of T1 are considerably simpler than those for other theories, and so is our proof of the soundness of a particular