Results 1 
6 of
6
A New Approach for Visualizing UML Class Diagrams
"... UML diagrams have become increasingly important in the engineering and reengineering processes for software systems. Of particular interest are UML class diagrams whose purpose is to display class hierarchies (generalizations), associations, aggregations, and compositions in one picture. The combina ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
UML diagrams have become increasingly important in the engineering and reengineering processes for software systems. Of particular interest are UML class diagrams whose purpose is to display class hierarchies (generalizations), associations, aggregations, and compositions in one picture. The combination of hierarchical and nonhierarchical relations poses a special challenge to a graph layout tool. Existing layout tools treat hierarchical and nonhierarchical relations either alike or as separate tasks in a twophase process as in, e.g., [Seemann 1997]. We suggest a new approach for visualizing UML class diagrams leading to a balanced mixture of the following aesthetic criteria: Crossing minimization, bend minimization, uniform direction within each class hierarchy, no nesting of one class hierarchy within another, orthogonal layout, merging of multiple inheritance edges, and good edge labelling. We have realized our approach within the graph drawing library GoVisual. Experiments show the superiority to stateoftheart and industrial standard layouts.
A linear time algorithm for finding a maximal planar subgraph based on PCtrees
 of Lecture Notes in Computer Science
, 2005
"... ABSTRACT. Given an undirected graph G, the maximal planar subgraph problem is to determine a planar subgraph H of G such that no edge of GH can be added to H without destroying planarity. Polynomial algorithms have been obtained by Jakayumar, Thulasiraman and Swamy [6] and Wu [9]. O(mlogn) algorith ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
(Show Context)
ABSTRACT. Given an undirected graph G, the maximal planar subgraph problem is to determine a planar subgraph H of G such that no edge of GH can be added to H without destroying planarity. Polynomial algorithms have been obtained by Jakayumar, Thulasiraman and Swamy [6] and Wu [9]. O(mlogn) algorithms were previously given by Di Battista and Tamassia [3] and Cai, Han and Tarjan [2]. A recent O(mα (n)) algorithm was obtained by La Poute [7]. Our algorithm is based on a simple planarity test [5] developed by the author, which is a vertex addition algorithm based on a depthfirstsearch ordering. The planarity test [5] uses no complicated data structure and is conceptually simpler than Hopcroft and Tarjan's path addition and Lempel, Even and Cederbaum's vertex addition approaches. 1 1.
Graph Drawing Algorithm Engineering with AGD
, 2000
"... We discuss the algorithm engineering aspects of AGD, a software library of algorithms for graph drawing. AGD represents algorithms as classes that provide one or more methods for calling the algorithm. There is a common base class, also called the type of an algorithm, for algorithms providing basic ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We discuss the algorithm engineering aspects of AGD, a software library of algorithms for graph drawing. AGD represents algorithms as classes that provide one or more methods for calling the algorithm. There is a common base class, also called the type of an algorithm, for algorithms providing basically the same functionality. This enables us to exchange components and experiment with various algorithms and implementations of the same type. We give examples for algorithm engineering with AGD for drawing general nonhierarchical graphs and hierarchical graphs.
Algorithm Engineering – An Attempt at a Definition
"... Abstract. This paper defines algorithm engineering as a general methodology for algorithmic research. The main process in this methodology is a cycle consisting of algorithm design, analysis, implementation and experimental evaluation that resembles Popper’s scientific method. Important additional ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Abstract. This paper defines algorithm engineering as a general methodology for algorithmic research. The main process in this methodology is a cycle consisting of algorithm design, analysis, implementation and experimental evaluation that resembles Popper’s scientific method. Important additional issues are realistic models, algorithm libraries, benchmarks with realworld problem instances, and a strong coupling to applications. Algorithm theory with its process of subsequent modelling, design, and analysis is not a competing approach to algorithmics but an important ingredient of algorithm engineering. appl. engineering realistic models design implementation libraries algorithm− perf.− guarantees applications
Advances in the Planarization Method: Effective Multiple Edge Insertions
"... Abstract. The planarization method is the strongest known method to heuristically find good solutions to the general crossing number problem in graphs: starting from a planar subgraph, one iteratively inserts edges, representing crossings via dummy nodes. In the recent years, several improvements bo ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. The planarization method is the strongest known method to heuristically find good solutions to the general crossing number problem in graphs: starting from a planar subgraph, one iteratively inserts edges, representing crossings via dummy nodes. In the recent years, several improvements both from the practical and the theoretical point of view have been made. We review these advances and conduct an extensive study of the algorithms ’ practical implications. Thereby, we present the first implementation of an approximation algorithm for the crossing number problem of general graphs, and compare the obtained results with known exact crossing number solutions. 1