Results 1 
8 of
8
NonEquilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures
, 1999
"... . We study the statistical mechanics of a finitedimensional nonlinear Hamiltonian system (a chain of anharmonic oscillators) coupled to two heat baths (described by wave equations). Assuming that the initial conditions of the heat baths are distributed according to the Gibbs measures at two differ ..."
Abstract

Cited by 53 (14 self)
 Add to MetaCart
. We study the statistical mechanics of a finitedimensional nonlinear Hamiltonian system (a chain of anharmonic oscillators) coupled to two heat baths (described by wave equations). Assuming that the initial conditions of the heat baths are distributed according to the Gibbs measures at two different temperatures we study the dynamics of the oscillators. Under suitable assumptions on the potential and on the coupling between the chain and the heat baths, we prove the existence of an invariant measure for any temperature difference, i.e., we prove the existence of steady states. Furthermore, if the temperature difference is sufficiently small, we prove that the invariant measure is unique and mixing. In particular, we develop new techniques for proving the existence of invariant measures for random processes on a noncompact phase space. These techniques are based on an extension of the commutator method of H ormander used in the study of hypoelliptic differential operators. 1. Intr...
A GallavottiCohen Type Symmetry in the Large Deviation Functional for Stochastic Dynamics
 J. STAT. PHYS
, 1999
"... ..."
L.: Entropy production in nonlinear, thermally driven hamiltonian systems
 J. Stat. Phys
, 1999
"... Abstract. We consider a finite chain of nonlinear oscillators coupled at its ends to two infinite heat baths which are at different temperatures. Using our earlier results about the existence of a stationary state, we show rigorously that for arbitrary temperature differences and arbitrary coupling ..."
Abstract

Cited by 39 (16 self)
 Add to MetaCart
Abstract. We consider a finite chain of nonlinear oscillators coupled at its ends to two infinite heat baths which are at different temperatures. Using our earlier results about the existence of a stationary state, we show rigorously that for arbitrary temperature differences and arbitrary couplings, such a system has a unique stationary state. (This extends our earlier results for small temperature differences.) In all these cases, any initial state will converge (at an unknown rate) to the stationary state. We show that this stationary state continually produces entropy. The rate of entropy production is strictly negative when the temperatures are unequal and is proportional to the mean energy flux through the system. 1.
Fourier’s law for a harmonic crystal with selfconsistent stochastic reservoirs
, 2004
"... We consider a ddimensional harmonic crystal in contact with a stochastic Langevin type heat bath at each site. The temperatures of the ‘‘exterior’ ’ left and right heat baths are at specified values TL and TR, respectively, while the temperatures of the ‘‘interior’ ’ baths are chosen selfconsisten ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
We consider a ddimensional harmonic crystal in contact with a stochastic Langevin type heat bath at each site. The temperatures of the ‘‘exterior’ ’ left and right heat baths are at specified values TL and TR, respectively, while the temperatures of the ‘‘interior’ ’ baths are chosen selfconsistently so that there is no average flux of energy between them and the system in the steady state. We prove that this requirement uniquely fixes the temperatures and the self consistent system has a unique steady state. For the infinite system this state is one of local thermal equilibrium. The corresponding heat current satisfies Fourier’s law with a finite positive thermal conductivity which can also be computed using the Green–Kubo formula. For the harmonic chain (d=1) the conductivity agrees with the expression obtained by Bolsterli, Rich, and Visscher in 1970 who first studied this model. In the other limit, d ± 1, the stationary infinite volume heat conductivity behaves as (add) −1 where ad is the coupling to the intermediate reservoirs. We also analyze the effect of having a nonuniform distribution of the heat bath couplings. These results are proven rigorously by controlling the behavior of the correlations in the thermodynamic limit. KEY WORDS: Fourier’s law; harmonic crystal; nonequilibrium systems; thermodynamic limit; Green–Kubo formula.
Steadystate electric conduction in the periodic Lorentz gas
 Commun. Math. Phys
, 1993
"... Abstract. We study nonequilibrium steady states in the Lorentz gas of periodic scatterers when an external field is applied and the particle kinetic energy is held fixed by a “thermostat ” constructed according to Gauss ’ principle of least constraint ( a model problem previously studied numerically ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
Abstract. We study nonequilibrium steady states in the Lorentz gas of periodic scatterers when an external field is applied and the particle kinetic energy is held fixed by a “thermostat ” constructed according to Gauss ’ principle of least constraint ( a model problem previously studied numerically by Moran and Hoover). The resulting dynamics is reversible and deterministic, but does not preserve Liouville measure. For a sufficiently small field, we prove the following results: (1) existence of a unique stationary, ergodic measure obtained by forward evolution of initial absolutely continuous distributions, for which the Pesin entropy formula and Young’s expression for the fractal dimension are valid; (2) exact identity of the steadystate thermodyamic entropy production, the asymptotic decay of the Gibbs entropy for the timeevolved distribution, and minus the sum of the Lyapunov exponents; (3) an explicit expression for the full nonlinear current response (Kawasaki formula); and (4) validity of linear response theory and Ohm’s transport law, including the Einstein relation between conductivity and diffusion matrices. Results (2) and (4) yield also a direct relation between Lyapunov exponents and zerofield transport (=diffusion)
Erratum: Billiards in a general domain with random reflections
, 2009
"... We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D ⊂ R d until it hits the boundary and bounces randomly inside according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywher ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D ⊂ R d until it hits the boundary and bounces randomly inside according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has Partially supported by CNRS (UMR 7599 “Probabilités et Modèles Aléatoires”)
Statistical Mechanics of anharmonic lattices
 In Advances in Differential Equations and Mathematical Physics, Contemporary Mathematics 327
, 2003
"... Abstract. We discuss various aspects of a series of recent works on the nonequilibrium stationary states of anharmonic crystals coupled to heat reservoirs (see also [7]). We expose some of the main ideas and techniques and also present some open problems. 1. ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. We discuss various aspects of a series of recent works on the nonequilibrium stationary states of anharmonic crystals coupled to heat reservoirs (see also [7]). We expose some of the main ideas and techniques and also present some open problems. 1.
Entropy Production in NonLinear, Thermally Driven
 J. Stat. Phys
, 1999
"... We consider a finite chain of nonlinear oscillators coupled at its ends to two infinite heat baths which are at different temperatures. Using our earlier results about the existence of a stationary state, we show rigorously that for arbitrary temperature differences and arbitrary couplings, such ..."
Abstract
 Add to MetaCart
We consider a finite chain of nonlinear oscillators coupled at its ends to two infinite heat baths which are at different temperatures. Using our earlier results about the existence of a stationary state, we show rigorously that for arbitrary temperature differences and arbitrary couplings, such a system has a unique stationary state. (This extends our earlier results for small temperature differences.) In all these cases, any initial state will converge (at an unknown rate) to the stationary state. We show that this stationary state continually produces entropy. The rate of entropy production is strictly negative when the temperatures are unequal and is proportional to the mean energy flux through the system.