Results 1  10
of
64
Probabilistic logic and probabilistic networks
, 2008
"... While in principle probabilistic logics might be applied to solve a range of problems, in practice they are rarely applied at present. This is perhaps because they seem disparate, complicated, and computationally intractable. However, we shall argue in this programmatic paper that several approaches ..."
Abstract

Cited by 23 (17 self)
 Add to MetaCart
(Show Context)
While in principle probabilistic logics might be applied to solve a range of problems, in practice they are rarely applied at present. This is perhaps because they seem disparate, complicated, and computationally intractable. However, we shall argue in this programmatic paper that several approaches to probabilistic logic fit into a simple unifying framework: logically complex evidence can be used to associate probability intervals or probabilities with sentences. Specifically, we show in Part I that there is a natural way to present a question posed in probabilistic logic, and that various inferential procedures provide semantics for that question: the standard probabilistic semantics (which takes probability functions as models), probabilistic argumentation (which considers the probability of a hypothesis being a logical consequence of the available evidence), evidential probability (which handles reference classes and frequency data), classical statistical inference
Interpreting Causality
 in the Health Sciences,‖ International Studies in the Philosophy of Science
, 2007
"... Perhaps the key philosophical questions concerning causality are the following: • what are causal relationships? • how can one discover causal relationships? ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
Perhaps the key philosophical questions concerning causality are the following: • what are causal relationships? • how can one discover causal relationships?
Interpreting causality in the health sciences
 International Studies in the Philosophy of Science
"... We argue that the health sciences make causal claims on the basis of evidence both of physical mechanisms and of probabilistic dependencies. Consequently, an analysis of causality solely in terms of physical mechanisms, or solely in terms of probabilistic relationships, does not do justice to the ca ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
(Show Context)
We argue that the health sciences make causal claims on the basis of evidence both of physical mechanisms and of probabilistic dependencies. Consequently, an analysis of causality solely in terms of physical mechanisms, or solely in terms of probabilistic relationships, does not do justice to the causal claims of these sciences. Yet there seems to be a single relation of cause in these sciences—pluralism about causality will not do either. Instead, we maintain, the health sciences require a theory of causality that unifies its mechanistic and probabilistic aspects. We argue
Objective Bayesian nets
 We Will Show Them! Essays in Honour of Dov Gabbay
, 2005
"... I present a formalism that combines two methodologies: objective Bayesianism and Bayesian nets. According to objective Bayesianism, an agent’s degrees of belief (i) ought to satisfy the axioms of probability, (ii) ought to satisfy constraints imposed by background knowledge, and (iii) should otherwi ..."
Abstract

Cited by 13 (11 self)
 Add to MetaCart
I present a formalism that combines two methodologies: objective Bayesianism and Bayesian nets. According to objective Bayesianism, an agent’s degrees of belief (i) ought to satisfy the axioms of probability, (ii) ought to satisfy constraints imposed by background knowledge, and (iii) should otherwise be as noncommittal as possible (i.e. have maximum entropy). Bayesian nets offer an efficient way of representing and updating probability functions. An objective Bayesian net is a Bayesian net representation of the maximum entropy probability function. I show how objective Bayesian nets can be constructed, updated and combined, and how they can deal with cases in which the agent’s background knowledge includes knowledge of qualitative influence relationships, e.g. causal influences. I then sketch a number of applications of the resulting formalism, showing how it can shed light on probability logic, causal modelling, logical reasoning, semantic reasoning, argumentation
Causal models as minimal descriptions of multivariate systems. http://parallel.vub.ac.be/∼jan
, 2006
"... ABSTRACT. By applying the minimality principle for model selection, one should seek the model that describes the data by a code of minimal length. Learning is viewed as data compression that exploits the regularities or qualitative properties found in the data, in order to build a model containing t ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
ABSTRACT. By applying the minimality principle for model selection, one should seek the model that describes the data by a code of minimal length. Learning is viewed as data compression that exploits the regularities or qualitative properties found in the data, in order to build a model containing the meaningful information. The theory of causal modeling can be interpreted by this approach. The regularities are the conditional independencies reducing a factorization and the vstructure regularities. In the absence of other regularities, a causal model is faithful and offers a minimal description of a probability distribution. The causal interpretation of a faithful Bayesian network is motivated by the canonical representation it offers and faithfulness. A causal model decomposes the distribution into independent atomic blocks and is able to explain all qualitative properties found in the data. The existence of faithful models depends on the additional regularities in the data. Local structure of the conditional probability distributions allow further compression of the model. Interfering regularities, however, generate conditional independencies that do not follow from the Markov condition. These regularities has to be incorporated into an augmented model for which the inference algorithms are adapted to take into account their influences. But for other regularities, like patterns in a string, causality does not offer a modeling framework that leads to a minimal description. 1
Combining argumentation and Bayesian nets for breast cancer . . .
, 2005
"... We present a new framework for combining logic with probability, and demonstrate the application of this framework to breast cancer prognosis. Background knowledge concerning breast cancer prognosis is represented using logical arguments. This background knowledge and a database are used to build a ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
We present a new framework for combining logic with probability, and demonstrate the application of this framework to breast cancer prognosis. Background knowledge concerning breast cancer prognosis is represented using logical arguments. This background knowledge and a database are used to build a Bayesian net that captures the probabilistic relationships amongst the variables. Causal hypotheses gleaned from the Bayesian net in turn generate new arguments. The Bayesian net can be queried to help decide when one argument attacks another. The Bayesian net is used to perform the prognosis, while the argumentation framework
Objective Bayesianism, Bayesian Conditionalisation
, 2008
"... Objective Bayesianism has been criticised on the grounds that objective Bayesian updating, which on a finite outcome space appeals to the maximum entropy principle, differs from Bayesian conditionalisation. The main task of this paper is to show that this objection backfires: the difference between ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
(Show Context)
Objective Bayesianism has been criticised on the grounds that objective Bayesian updating, which on a finite outcome space appeals to the maximum entropy principle, differs from Bayesian conditionalisation. The main task of this paper is to show that this objection backfires: the difference between the two forms of updating reflects negatively on Bayesian conditionalisation rather than on objective Bayesian updating. The paper also reviews some existing criticisms and justifications of conditionalisation, arguing in particular that the diachronic Dutch book justification fails because diachronic Dutch book arguments are subject to a reductio: in certain circumstances one can Dutch book an agent however she changes her degrees of belief. One may also criticise objective Bayesianism on the grounds that its norms are not compulsory but voluntary, the result of a stance. It is argued that this second objection also misses the mark, since objective
Philosophies of probability: objective Bayesianism and its challenges
 Handbook of the philosophy of mathematics. Elsevier, Amsterdam. Handbook of the Philosophy of Science
, 2004
"... This chapter presents an overview of the major interpretations of probability followed by an outline of the objective Bayesian interpretation and a discussion of the key challenges it faces. ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
This chapter presents an overview of the major interpretations of probability followed by an outline of the objective Bayesian interpretation and a discussion of the key challenges it faces.
Causal pluralism versus epistemic causality
, 2007
"... It is tempting to analyse causality in terms of just one of the indicators of causal relationships, e.g., mechanisms, probabilistic dependencies or independencies, counterfactual conditionals or agency considerations. While such an analysis will surely shed light on some aspect of our concept of cau ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
It is tempting to analyse causality in terms of just one of the indicators of causal relationships, e.g., mechanisms, probabilistic dependencies or independencies, counterfactual conditionals or agency considerations. While such an analysis will surely shed light on some aspect of our concept of cause, it will fail to capture the whole, rather multifarious, notion. So one might instead plump for pluralism: a different analysis for a different occasion. But we do not seem to have lots of different kinds of cause—just one eclectic notion. The resolution of this conundrum, I think, requires us to accept that our causal beliefs are generated by a wide variety of indicators, but to deny that this variety of indicators yields a variety of concepts of cause. This focus on the relation between evidence and causal beliefs leads to what I call epistemic causality. Under this view, certain causal beliefs are appropriate or rational on the basis of observed evidence; our notion of cause can be understood purely in terms of these rational
Inductive influence
 British Journal for the Philosophy of Science
"... Objective Bayesianism has been criticised for not allowing learning from experience: it is claimed that an agent must give degree of belief 1 to the next raven being black, however many other black ravens have 2 been observed. I argue that this objection can be overcome by appealing to objective Bay ..."
Abstract

Cited by 9 (7 self)
 Add to MetaCart
Objective Bayesianism has been criticised for not allowing learning from experience: it is claimed that an agent must give degree of belief 1 to the next raven being black, however many other black ravens have 2 been observed. I argue that this objection can be overcome by appealing to objective Bayesian nets, a formalism for representing objective Bayesian degrees of belief. Under this account, previous observations exert an inductive influence on the next observation. I show how this approach can be used to capture the JohnsonCarnap continuum of inductive methods, as well as the NixParis continuum, and show how inductive influence can