Results 1 
5 of
5
Probabilistic logic and probabilistic networks
, 2008
"... While in principle probabilistic logics might be applied to solve a range of problems, in practice they are rarely applied at present. This is perhaps because they seem disparate, complicated, and computationally intractable. However, we shall argue in this programmatic paper that several approaches ..."
Abstract

Cited by 19 (15 self)
 Add to MetaCart
While in principle probabilistic logics might be applied to solve a range of problems, in practice they are rarely applied at present. This is perhaps because they seem disparate, complicated, and computationally intractable. However, we shall argue in this programmatic paper that several approaches to probabilistic logic fit into a simple unifying framework: logically complex evidence can be used to associate probability intervals or probabilities with sentences. Specifically, we show in Part I that there is a natural way to present a question posed in probabilistic logic, and that various inferential procedures provide semantics for that question: the standard probabilistic semantics (which takes probability functions as models), probabilistic argumentation (which considers the probability of a hypothesis being a logical consequence of the available evidence), evidential probability (which handles reference classes and frequency data), classical statistical inference
Inductive influence
 British Journal for the Philosophy of Science
"... Objective Bayesianism has been criticised for not allowing learning from experience: it is claimed that an agent must give degree of belief 1 to the next raven being black, however many other black ravens have 2 been observed. I argue that this objection can be overcome by appealing to objective Bay ..."
Abstract

Cited by 9 (7 self)
 Add to MetaCart
Objective Bayesianism has been criticised for not allowing learning from experience: it is claimed that an agent must give degree of belief 1 to the next raven being black, however many other black ravens have 2 been observed. I argue that this objection can be overcome by appealing to objective Bayesian nets, a formalism for representing objective Bayesian degrees of belief. Under this account, previous observations exert an inductive influence on the next observation. I show how this approach can be used to capture the JohnsonCarnap continuum of inductive methods, as well as the NixParis continuum, and show how inductive influence can
Objective Bayesianism, Bayesian Conditionalisation
, 2008
"... Objective Bayesianism has been criticised on the grounds that objective Bayesian updating, which on a finite outcome space appeals to the maximum entropy principle, differs from Bayesian conditionalisation. The main task of this paper is to show that this objection backfires: the difference between ..."
Abstract

Cited by 9 (7 self)
 Add to MetaCart
Objective Bayesianism has been criticised on the grounds that objective Bayesian updating, which on a finite outcome space appeals to the maximum entropy principle, differs from Bayesian conditionalisation. The main task of this paper is to show that this objection backfires: the difference between the two forms of updating reflects negatively on Bayesian conditionalisation rather than on objective Bayesian updating. The paper also reviews some existing criticisms and justifications of conditionalisation, arguing in particular that the diachronic Dutch book justification fails because diachronic Dutch book arguments are subject to a reductio: in certain circumstances one can Dutch book an agent however she changes her degrees of belief. One may also criticise objective Bayesianism on the grounds that its norms are not compulsory but voluntary, the result of a stance. It is argued that this second objection also misses the mark, since objective
Objective Bayesianism with predicate languages. Synthese
, 2008
"... Objective Bayesian probability is often defined over rather simple domains, e.g., finite event spaces or propositional languages. This paper investigates the extension of objective Bayesianism to firstorder logical languages. It is argued that the objective Bayesian should choose a probability func ..."
Abstract

Cited by 5 (5 self)
 Add to MetaCart
Objective Bayesian probability is often defined over rather simple domains, e.g., finite event spaces or propositional languages. This paper investigates the extension of objective Bayesianism to firstorder logical languages. It is argued that the objective Bayesian should choose a probability function, from all those that satisfy constraints imposed by background knowledge, that is closest to a particular frequencyinduced probability function which generalises the λ = 0 function of Carnap’s continuum of inductive methods.
DOI 10.1007/s112290079298y Objective Bayesianism with predicate languages
"... Abstract Objective Bayesian probability is often defined over rather simple domains, e.g., finite event spaces or propositional languages. This paper investigates the extension of objective Bayesianism to firstorder logical languages. It is argued that the objective Bayesian should choose a probabi ..."
Abstract
 Add to MetaCart
Abstract Objective Bayesian probability is often defined over rather simple domains, e.g., finite event spaces or propositional languages. This paper investigates the extension of objective Bayesianism to firstorder logical languages. It is argued that the objective Bayesian should choose a probability function, from all those that satisfy constraints imposed by background knowledge, that is closest to a particular frequencyinduced probability function which generalises the λ = 0 function of Carnap’s continuum of inductive methods.